Какое будущее у аэрокосмического транспорта? Самолёты будущего от современных аэрокосмических компаний Список использованной литературы.

Историко-исследовательская работа на тему

« Какое будущее у аэрокосмического транспорта? »

SpaceX — Дорога в будущее

Об истории и перспективах развития компании SpaceX

Научный руководитель: Гибатов Ильдар Рафисович, учитель истории МОБУ СОШ №2 с. Бижбуляк.

Гипотеза исследования: в будущем можно будет использовать проекты SpaceX как универсальный аэрокосмический транспорт.

Цель работы : выяснить, можно ли для развития аэрокосмического транспорта использовать проекты Space X.

Задачи:

  1. Изучить историю компании;
  2. Изучить эволюцию ракетоносителей SpaceX;
  3. Изучить перспективы проектов

Методы исследования :

  1. Изучение и анализ литературы и соответствующих сайтов в сети Интернет;
  2. Анализ отчетов компании;
  3. Сравнение с отечественными идеями.

Объект исследования: частная космическая компания Space Exploration Technologies

Проект SpaceX. История проекта

Путём изучения литературы и источников в сети Интернет я узнаю о проекте SpaceX, ее основателе, истории создания компании. В ходе исследований изучаю ее ракетоносители и привожу их технические характеристики, разбираю причины неудачных запусков.

Перспективы ракетоносителей SpaceX

Продолжая знакомиться со SpaceX, я выяснил, что следующим развитием ее ракет является РН Falcon Heavy — ракета сверхтяжелого класса, она будет способна доставить полностью загруженный космический корабль Dragon на Марс, или на Юпитер. Также узнаю, что в ней будет использована уникальная система перекрестной подачи топлива.

Двигатели, разработанные в компании SpaceX

Компания SpaceX в своих РН использует двигатели собственной разработки Merlin, которые работают по схеме открытого цикла. Данная схема проста, надёжна, и недорогая в создании и использовании, также это с большим заделом на будущее, способствует использованию многоразовых систем. Привожу сравнение тяги двигателя с другими и их стоимость, вычисляю тяговооруженность двигателя.

Reusable — многоразовость

Исследуя ракетоносители и двигатели компании, я узнал о проекте возвращаемой первой ступени ракетоносителей компании SpaceX. Я выяснил, что таким способом стоимость запуска снижается на ~60%. И эти средства компания может вложить в свои будущие разработки и перспективы.

В 2004 году компания начала разрабатывать корабль Dragon, свой первый полёт он совершил в декабре 2010 года. Уникальность Dragon заключается в возможности возвращать грузы с МКС на Землю и это первый корабль, произведенный частной компанией, который пристыковался к МКС. Узнаю, что в перспективе корабля — уникальная миссия «Mars 2020».

Заключение

На основании всех приведенных материалов я пришел к выводу, что в будущем можно будет использовать проект SpaceX для аэрокосмического транспорта.

Список использованной литературы

  1. Эшли Вэнс — Илон Маск. Tesla, SpaceX и дорога в будущее. (Издательство: Олимп-Бизнес; 2015 г.; ISBN 978-5-9693-0307-2, 978-0-06-230123-9, 978-59693-0330-0)
  2. В.А. Афанасьев — Экспериментальная отработка космических летательных аппаратов (Издательство: М.: Изд-во МАИ.; 1994 г.; ISBN: 5-7035-0318-3)
  3. В. Максимовский — «Ангара-Байкал. О разгонном ракетном модуле многоразового использования »
  4. Официальный сайт SpaceX — http://spacex.com
  5. Официальный YouTube-канал SpaceX — https://goo.gl/w6x3gW
  6. Материал из Википедии — https://ru.wikipedia.org/wiki/SpaceX

Проблемные вопросы

для выполнения историко-исследовательских работ
Международной олимпиады по истории авиации и воздухоплавания

1. Авианесущие корабли: архаизм или необходимость?

2. Авиационные музеи мира - школа инженера и конструктора.

3. Аэропорт будущего – как его представляли в прошлом и что думают о будущем?

4. Бумажный самолетик- детская забава и научные исследования?

5. Воздушная акробатика: спорт или цирк?

6. Воздушные авианосцы: миф или реальность?

7. Воздушные змеи: детские забавы или практическая аэронавтика?

8. Воздушные шары: наука, спорт, туризм, развлечение…

9. Воздушный таран – исключительно ли оружие русских?

10. В чем преимущества и недостатки термоплана перед другими ЛА?

11. В чем причина катастроф воздушных судов?

12. Высший пилотаж: боевое искусство или спорт?

13. Глайдеры - спорт только для богатых?

14. Для чего и как использовались стратосферные аэростаты?

15. Есть ли будущее у атомных самолетов?

16. Есть ли будущее у дирижаблей?

17. Есть ли будущее у орнитоптеров?

18. Есть ли перспективы в развитии ранцевых летательных аппаратов?

19. Есть ли польза в изучении забытых проектов самолетов XX века?

20. Загадка «Колокола» и «Хука» в небе

21. Зачем самолету гусеничное шасси?

22. Зачем самолету шасси на воздушной подушке?

23. Как авиапассажирам избежать воздушных болезней?

24. Как бороться с воздушным терроризмом?

25. Как готовят астронавтов?

26. Как заслоняли воздушное пространство аэростатами в годы войны?

27. Как зарождалась идея полета человека?

28. Как зарождалась концепция аэробуса?

29. Как законы и закономерности диалектики проявляются в авиации?

30. Как и почему родилась идея самолета-амфибии?

31. Как и где в самолетостроении впервые появились композиционные материалы?

32. Как и где работают роботы в авиации?

33. Как использовались аэростаты в военных действиях?

34. Как меняется дизайн интерьеров самолетов?

35. Как отразилось стремление к полету в изобразительном искусстве и литературе?

36. Как отражена история авиации в мировом кинематографе?

37. Как отражается мода в лётном обмундировании?

38. Как повлияла конструкторская школа И.И. Сикорского на развитие мировой авиации?

39. Как проявляется мода в авиации и воздухоплавании?

40. Как в филателии, нумизматике, фалеристике и других видах коллекционирования отражаются важнейшие события в освоении воздушного пространства?

41. Как проявляется «золотое сечение» в авиационных конструкциях?

42. Как проявляются законы строения и развития техники в авиации?

43. Как рождалась авиационная терминология?

45. Как сложилась судьба русских авиационных инженеров эмигрировавших в другие страны?

46. Как снизить риски летчиков-испытателей авиационной техники?

47. Как спасти экипаж и пассажиров?

48. Как уместить летательный аппарат в чемодан и зачем это надо?

49. Как формировалась концепция малозаметного самолета в России и в мире?

50. Как формируется образ пионеров освоения воздушного пространства?

51. Какие барьеры стоят на пути развития авиации?

52. Какие задачи у самолетов гигантов?

53. Какие летательные аппараты, опередили свое время и почему?

54. Какие летательные аппараты стали самыми загадочными в истории?

55. Какие надежды специалисты связывают с мотопланерами в XXI веке?

56. Какие новые научные направления в авиации появились в конце ХХ - начале ХХI веков?

57. Какие перспективы существуют у деревянного самолетостроения?

58. Какие перспективы у российской малой авиации в XXI веке?

59. Какие подвиги советских летчиков в период Великой отечественной войны оказались забыты?

60. Какие преимущества имеют автожиры по сравнению с другими летательными аппаратами?

61. Какие приборы были на борту первых самолетов?

62. Какие приоритеты есть у России в области освоения воздушного пространства?

63. Какие проблемы были и остаются у воздушного такси?

64. Какие рекорды зафиксированы у мускулолетов?

65. Какие Российские международные авиационные рекорды самые выдающиеся?

66. Какие даты в истории мировой авиации самые важные?

67. Какие экологические проблемы существуют в авиации?

68. Какие технологии производства оказали существенное влияние на развитие авиации?

69. Какие технологии сыграли ключевую роль в истории авиастроения?

70. Какие этапы развития прошло авиационное стрелково-пушечное вооружение?

71. Какова достоверность информации по истории авиации и воздухоплавания в интернете?

72. Какова историческая роль компьютера в авиации?

73. Какова роль женщин в истории авиации и воздухоплавания?

74. Какова роль заимствований зарубежного опыта в развитии отечественного авиастроения?

75. Какова сущность концепции суперциркуляции Анри Коанде?

76. Каково прошлое и будущее авиамоделизма?

77. Каковы недостатки применения СВВП?

78. Каковы перспективы борьбы с беспилотными летательными аппаратами?

79. Каковы пределы применения многомоторных воздушных гигантов?

80. Каковы преимущества у экранолётов и недостатки экранопланов?

81. Какое будущее у аэрокосмического транспорта?

82. Какое будущее у частной авиации в России?

83. Какой может быть роль биотехнологий в авиации?

84. Какую роль в истории авиации сыграл паровой двигатель?

85. Какую роль играет авиация в спасательных экспедициях?

86. Какую роль сыграли самолеты-снаряды во Второй мировой войне?

87. Когда и как зародилась бумажная авиация?

88. Когда полетит пассажирский самолет с гиперзвуковой скоростью?

89. Когда полетят самолеты на альтернативном топливе?

90. Когда полетят электролеты и магнитолеты?

91. Кто стоял у истоков отечественной авионики?

92. К чему приводит «воздушное хулиганство»?

93. Мертвая петля - история одного термина и история фигуры высшего пилотажа

94. Может ли авиация быть безаэродромной?

95. Можно ли научиться летать, тренируясь только на авиатренажере?

96. Можно ли создать полностью "невидимый” самолет?

97. Неизвестные факты великих перелетов.

98. Нужно ли современному инженеру искусство? Авиационные конструкторы: писатели, художники, поэты.

99. Оправданы ли риски пилотажных групп?

100. Почему возрождаются полипланные схемы крыльев на современных самолетах?

101. Почему государства стремятся участвовать в аэрокосмических салонах мира?

102. Почему забыты многие проекты авиационных двигателей?

103. Почему и как люди используют животных для испытания аэрокосмической техники?

104. Почему мы забываем имена великих ученых и инженеров?

105. Почему надо тратить средства на возведение памятников самолетам?

106. Почему огненный таран – оружие русских?

107. Почему появляются проекты гибридных аэростатических летательных аппаратов?

108. Почему появляются самолеты необычного назначения (танкеры, командные пункты, танки, метеоразведчики)?

109. Почему создавали самолеты с ракетными двигателями?

110. Почему то или иное событие (по вашему выбору) стало вехой в истории авиации?

111. Почему у самолетов появилась комбинированная силовая установка?

112. Самолет и поезд: совместимы ли они?

113. Самолеты-реплики: спорт или искусство?

114. Самолет-трансформер: футуристическая идея или необходимость?

115. Самые популярные кулинарные рецепты на борту пассажирских авиалайнеров.

116. Сверхзвуковые самолеты гидроавиации – вымысел или реальность?

117. С какой целью строят самолеты с несущим фюзеляжем?

118. Скрытые смыслы аэронаутонимов, есть ли имена у летательных аппаратов?

119. Станет ли авиация беспилотной?

120. Существует ли авиационный профессиональный диалект и кто на нем говорит?

121. Существуют ли летательные аппараты с гибким крылом?

122. Чем отличаются истребители пяти поколений?

123. Что дадут нанотехнологии авиастроению?

124. Что мы знаем о подвигах летчиков в мирное время?

125. Что такое крылатые сплавы?

126. Что такое микросамолет и какие задачи он решает?

Введение
1. Историческое исследование вопроса
2. Перспективные двигатели будущего
3. Перспективность частных компаний в аэрокосмическом направлении
Заключение
Список использованной литературы

ВВЕДЕНИЕ

Благодаря развитию технологий в мире жизнь начала мчатся ускоренными темпами. Сейчас технологии сильно развились - даже вычислительные машины нашего времени в сравнении с машинами 20-30 летней давности стали настолько мощнее что даже не верится. За относительно короткое время технологии развились до уровня, который мы даже не представляли.

Благодаря развитию информационных и других технологий в других направлениях тоже произошли большие изменения. Например, авиация, если посмотреть - какая она была раньше и сейчас - это большая разница, она стала сложнее, мощнее, более безопасная для перелетов.

В наше время развиваются технологии в сторону аэрокосмического транспорта. Говоря про аэрокосмический транспорт, я представляю, что мы в скором времени уже начнем вплотную изучать космическое пространство полетами на большие космические дистанции.

Целью работы является рассмотрение вопроса - какое будущее у аэрокосмического транспорта?
В связи с этим в работе поставлены следующие задачи:

  • выполнить историческое исследование вопроса;
  • рассмотреть перспективные двигатели будущего;
  • изучить перспективность частных компаний в аэрокосмическом направлении.

1. ИСТОРИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОПРОСА

Впервые в реальность полёта к дальним мирам прогрессивное человечество поверило в конце 19 века. Именно тогда стало понятно, что, если летательному аппарату придать нужную для преодоления гравитации скорость и сохранять её достаточное время, он сможет выйти за пределы земной атмосферы и закрепиться на орбите.

4 октября 1957 года началась новая, а точнее первая, эра в освоении космоса - запуск первого искусственного спутника Земли «Спутник-1» (рис 3), с помощью ракеты Р-7 (рис 1,2), спроектированной под руководством Сергея Королёва. Первый спутник был микроскопическим, чуть более полуметра в диаметре и весил всего 83 кг. Полный виток вокруг Земли он совершал за 96 минут.

Всего через месяц после запуска «Спутника-1» на борту второго искусственного спутника Земли на орбиту отправилось первое животное - собака Лайка (рис 4). Цель у неё была - проверить выживаемость живых существ в условиях космического полёта. Запуск и вывод спутника на орбиту прошли успешно, но после четырёх витков вокруг Земли из-за ошибки в расчётах температура внутри аппарата чрезмерно поднялась, и Лайка погибла. Сам же спутник вращался в космосе ещё 5 месяцев, а затем потерял скорость и сгорел в плотных слоях атмосферы.

Лайка - первое животное выведенное на орбиту Земли (рис 4)

Первыми лохматыми космонавтами, по возвращении приветствовавшими своих «отправителей» радостным лаем, стали Белка и Стрелка (рис 5), отправившиеся покорять небесные просторы на пятом спутнике в августе 1960 г. Их полёт длился чуть более суток, и за это время собаки успели облететь планету 17 раз. По итогам запуска также был доработан и окончательно утверждён сам космический корабль - всего через 8 месяцев в аналогичном аппарате в космос отправится первый человек.

Белка и Стрелка (рис 5)

День 12 апреля 1961 г. первый человек покоривший космос - Юрий Гагарин на космическом корабле «Восток-1». Нужно отметить, что условия полёта были далеки от тех, что предлагаются ныне космическим туристам: Гагарин испытывал восьми-десятикратные перегрузки, был период, когда корабль буквально кувыркался, а за иллюминаторами горела обшивка и плавился металл.

Юрий Гагарин (рис 6)

Вслед за полётом Гагарина знаменательные вехи в истории освоения космоса посыпались одна за другой: был совершён первый в мире групповой космический полёт (рис 8), затем в космос отправилась первая женщина-космонавт Валентина Терешкова (1963 г) (рис 7), состоялся полёт первого многоместного космического корабля, Алексей Леонов (рис 10) стал первым человеком, совершившим выход в открытый космос (1965 г). Наконец, 21 июля 1969 г состоялась первая высадка человека на Луну (рис 9)

Первое определение авиационно-космической техники появилось в 1958 году. Определение объединяло атмосферу Земли и космическое пространство в единую сферу и объединила в себя оба термина: самолеты (аэро) и космические аппараты (космос). В ответ на первый запуск СССР первого спутника Земли в космос 4 октября 1957 года, инженеры аэрокосмической отрасли США запустили первый американский спутник 31 января 1958 года.

Для удобства космические корабли (КК) разделяют на 3 поколения

ПЕРВОЕ ПОКОЛЕНИЕ

Первое поколение следует считать советский «Восток» и американский «Меркурий». Они должны были решить только одну задачу: доказать, что человека можно вывести на околоземную орбиту, что в космосе можно жить, и можно вернутся на Землю живым и здоровым.

КОСМИЧЕСКИЕ КОРАБЛИ «ВОСТОК»

Трехступенчатая ракета-носитель состоит из четырех боковых блоков (I ступень), расположенных вокруг центрального блока (II ступень). Над центральным блоком помещена III ступень ракеты. На каждом из блоков I ступени был установлен четырех-камерный жидкостно-реактивный двигатель РД-107, а на II ступени — четырехкамерный реактивный двигатель РД-108. На III ступени был установлен однокамерный жидкостно-реактивный двигатель с четырьмя рулевыми соплами.

Ракета-носитель «Восток»
1 — головной обтекатель;
2 — полезный груз;
3 — кислородный бак;
4 — экран; 5 — керосиновый бак;
6 — управляющее сопло;
7 — жидкостный ракетный двигатель (ЖРД);
8 — переходная ферма;
9 — отражатель;
10 — приборный отсек центрального блока;
11 и 12 — варианты головного блока
(с АМС «Луна-1» и с АМС «Луна-3» соответственно).

Корабль «Восток» состоял из соединенных вместе спускаемого аппарата и приборно-агрегатного отсека. Масса корабля около 5 т.
Спускаемый аппарат (кабина экипажа) был выполнен в виде шара диаметром 2,3 м. В спускаемом аппарате было установлено кресло космонавта, приборы управления, система жизнеобеспечения. Кресло располагалось таким образом, чтобы возникающая при взлете и посадке перегрузка оказывала на космонавта наименьшее действие.

Капсула после приземления (рис 14)

ВТОРОЕ ПОКОЛЕНИЕ

Главная задача второго поколения - отработка систем для кораблей следующих поколений.
На «Восходе» была отработана система посадки. Отказ от системы катапультирования позволил без большой переработки корабля увеличить его вместительность.

КОСМИЧЕСКИЕ КОРАБЛИ «ВОСХОД»

Космический корабль «Восход-2» (рис 15)

Расширяются задачи космических полетов и соответственно совершенствуются космические корабли. 12 октября 1964 г. сразу три человека поднялись в космос на корабле «Восход»: В. М. Комаров (командир корабля), К. П. Феоктистов (ныне доктор физико-математических наук) и Б. Б. Егоров (врач).

Космический корабль «Восход-1» (рис 16)

Новый корабль существенно отличался от кораблей серии «Восток». Он вмещал трех космонавтов, имел систему мягкой посадки. «Восход-2» имел шлюзовую камеру для выхода из корабля в открытый космос.
Полет корабля «Восход-2» состоялся 18 марта 1965 г. После выхода космического корабля на орбиту была раскрыта шлюзовая камера. Шлюзовая камера развернулась с наружной стороны кабины, образовав цилиндр, в котором мог разместиться человек в скафандре.

Космический корабль «Восход-2» и схема шлюзования на корабле

1,4,9, 11 — антенны;

2 — телевизионная камера;

3 — баллоны со сжатым воздухом и кислородом;

5 — телевизионная камера;

6 — шлюз до наполнения;

7 — спускаемый аппарат;

8 — агрегатный отсек;

10 — двигатель системы торможения;

А — наполнение шлюза воздухом;

Б — выход космонавта в шлюз (люк открыт);

В — выпуск воздуха из шлюза наружу (люк закрыт);

Г — выход космонавта в космос при открытом наружном люке;

Д — отделение шлюза от кабины.

ТРЕТЬЕ ПОКОЛЕНИЕ

КК «Союз» и «Аполлон» - данные корабли предназначались для полёта на Луну и соответственно могли войти в атмосферу земли со второй космической скоростью.

КОСМИЧЕСКИЕ КОРАБЛИ «СОЮЗ»

Космический корабль «Союз» (рис 17)

Корабль «Союз» состоит из орбитального отсека, спускаемого аппарата и приборно-агрегатного отсека.
В кабине спускаемого аппарата расположены кресла космонавтов. Форма кресла позволяет легче переносить перегрузки, возникающие при взлете и посадке. Специальный амортизатор смягчает удары, возникающие при посадке.
На «Союзе» имеются две автономно действующие системы жизнеобеспечения: система жизнеобеспечения кабины и система жизнеобеспечения скафандра.

Ракета-носитель «Союз»

Стартовая масса, т - 300
Масса полезного груза, кг
«Союз» - 6800
«Прогресс» - 7020
Тяга двигателей, кН
I ступени - 4000
II ступени - 940
III ступени - 294
Максимальная скорость, м/с 8000

1— система аварийного спасения (САС);
2 —пороховые ускорители;
3 — корабль «Союз»;
4 — стабилизирующие щитки;
5 и 6 — топливные баки III ступени;
7 — двигатель III ступени;
8 — ферма между II и III ступенями;
9 — бак с окислителем I ступени;
10 — бак с окислителем I ступени;
11 и 12—баки с горючим I ступени;
13 — бак с жидким азотом;
14 — двигатель I ступени;
15 — двигатель II ступени;
16 — камера управления;
7 — воздушный руль.

Ракета-носитель «Союз» (рис 18)

Космический корабль «Союз Т» создан на базе корабля «Союз». «Союз Т-2» впервые выведен на орбиту в июне 1980 г. Новый корабль создан с учетом опыта разработки и эксплуатации КК «Союз». Стартовая масса корабля 6850 кг. Расчетная продолжительность автономного полета 4 суток, в составе орбитального комплекса 120 суток.

Варианты головного блока (рис 19)

I — с кораблем «Восход-2»;

II—с кораблем «Союз-5»;

III — с кораблем «Союз-12»;

IV — с кораблем «Союз-19»

ОТВЕТВЛЕНИЕ: ГРУЗОВЫЕ КОРАБЛИ

При разработке орбитальных станций второго поколения (станции рассчитаны на пополнение расходных материалов во время полёта) встал вопрос о доставке на орбитальные станций грузов. Для этого у нас был разработан корабль «Прогресс»

ГРУЗОВОЙ КОРАБЛЬ «ПРОГРЕСС»

Стыковка грузового корабля «Прогресс М-27М» с МКС (рис 19)

«Прогресс» — серия транспортных беспилотных грузовых космических кораблей (ТГК), выводимых на орбиту с помощью ракеты-носителя «Союз». Разработана в СССР для снабжения орбитальных станций.
Разработка нового корабля на базе космического корабля «Союз» под кодом 7К-ТГ была начата в 1973 году. Первый «Прогресс» вышел на орбиту 20 января 1978 года.

Разработчиком и изготовителем кораблей семейства «Прогресс» с 1970-х и по настоящее время является Ракетно-космическая корпорация «Энергия».

Транспортный грузовой корабль «Прогресс М1-10» (рис 20)

Первый грузовой корабль «Прогресс-1» был запущен к орбитальной станции «Салют-6» 20 января 1978 года. Контролировали ход операции Центр управления полётом и космонавты Юрий Романенко и Георгий Гречко, находившиеся на станции «Салют-6». 22 января в автоматическом режиме корабль был состыкован со станцией.

ОТВЕТВЛЕНИЕ: МНОГОРАЗОВЫЕ ЧЕЛНОКИ

Этот тип кораблей выделю в ответвление. Так как они являются альтернативой орбитальным станциям.

«КОСМИЧЕСКИЙ ЧЕЛНОК»

Космический челнок — многоразовый транспортный космический корабль. Подразумевалось, что шаттлы будут «сновать, как челноки» между околоземной орбитой и Землёй, доставляя полезные грузы в обоих направлениях.

Космический челнок после посадки (рис 21)

Программа по созданию космических челноков разрабатывалась компанией North American Rockwell и группой ассоциированных подрядчиков по поручению НАСА с 1971 года. Разработка и опытно-конструкторские работы велись в рамках совместной программы НАСА и ВВС. Всего было построено пять шаттлов (два из них погибли в катастрофах) и один прототип. Полеты в космос осуществлялись с 12 апреля 1981 года по 21 июля 2011 года.

Космический челнок при запуске (рис 22)

В 1985 году НАСА планировало, что к 1990 году будет совершаться по 24 старта в год, и каждый из кораблей совершит до 100 полётов в космос. На практике же они использовались значительно меньше — за 30 лет эксплуатации было произведено 135 пусков (в том числе две катастрофы).

Взлет челнока к МКС

30 октября 1968 года два головных центра NASA обратились к американским космическим компаниям с предложением исследовать возможность создания многоразовой космической системы, что должно было снизить затраты космического агентства при условии интенсивного использования.

Космический челнок «Буран» (рис 23)

Было решено настаивать на создании шаттла, но подать его не как транспортный корабль для сборки и обслуживания космической станции, а как систему, способную приносить прибыль и окупить инвестиции за счёт выведения на орбиту спутников на коммерческой основе.

2. ПЕРСПЕКТИВНЫЕ ДВИГАТЕЛЕЙ БУДУЩЕГО

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Рассмотрим основные идеи двигателей из этой области.

EmDrive

Двигатель EmDrive (рис 24)

EmDrive (Electro Magnetic Drive, электромагнитный двигатель) использует электромагнитные микроволновые полости для прямого преобразования энергии в тягу без необходимости использовать топливо. Конструкция представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны.

Схема работы двигателя EmDrive (рис 25)

Впервые предложенный британской исследовательской компанией концепт EmDrive был отвержен большей частью научного сообщества как нарушающий законы физики, в том числе и закон сохранения импульса.

Уайт предположил, что тяга EmDrive порождается виртуальными частицами в квантовом вакууме, которые ведут себя как ионы топлива в магнито-гидродинамических двигательных системах, добывающих «топливо» из самой ткани пространства-времени и устраняющих необходимость использования топлива. Хотя многие ученые раскритиковали теоретическую модель Уайта, другие считают, что он хотя бы указывает в правильном

Физика — экспериментальная наука, и тот факт, что EmDrive работает, подтвержден в лаборатории, но природа наблюдаемой тяги по-прежнему остается неясной.

Испытание двигателя EmDrive

Учитывая плюсы EM Drive, нетрудно понять, почему люди хотят видеть его в работе. Теоретически он мог бы вырабатывать достаточно тяги, чтобы долететь до Луны за четыре часа, до Марса — за 70 дней, до Плутона — за 18 месяцев, и все это без капли топлива. К сожалению, эта двигательная установка основана на принципах, нарушающих закон сохранения импульса.

В докладе также признается необходимость дальнейшего тестирования, чтобы исключить другие возможные причины. И если удастся исключить также внешние причины, будущие испытания поставят задачу повысить производительность EM Drive.

Градиент распространения температур на поверхности (рис 26)

Вдобавок ко всему этому, IB Times отмечает, что в посте доктора были информация из выдержки из статьи:
«Данные в ходе испытаний передней, обратной и нулевой тяги в режиме TM212 при менее 8106 мм рт. ст. показали, что система последовательно демонстрирует тягу с коэффициентом мощности в 1,2 +/- 0,1 мН/кВт».

Солнечный парус

Солнечный парус (рис 27)

Планетарное общество запустило проект под названием «Световой парус» (LightSail) для изучения возможности разработки космического аппарата, работающего полностью на солнечной энергии и ускоряемый исключительно солнечным светом.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь.

После нескольких неудачных попыток программы LightSail 1 в 2015 году все же удалось успешно завершить пробный запуск и раскрытие солнечного паруса. Новый вариант солнечного паруса, LightSail 2, планируется вывести на орбиту Земли с помощью ракеты SpaceX Falcon Heavy в 2018 году.


Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.
Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете.
Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода..

Принцип действия электрического паруса (рис 28)

Принцип, на котором работает HERTS, — это обмен импульсов между массивом длинных проводов под напряжением и протонами солнечного ветра, которые радиально текут от Солнца на скорости от 300 до 700 км/с. Высоковольтные положительно заряженные провода, ориентированные на поток солнечного ветра, отражают текущие протоны, в результате чего возникает реактивная сила в проводах — направленная также радиально от Солнца. За месяцы эта небольшая сила разгонит космический аппарат до гигантских скоростей — порядка 100-150 км/с (от 20 до 30 а. е. в год).

Ионный двигатель

Ионный двигатель (рис 29)

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой - около 50-100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго - до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных.

Недавние испытания ускорителя X3 (разновидность двигателя Холла) показали, что установка способна работать при мощности более 100 кВт и генерировать 5,4 ньютона силы, что на данный момент стало высшим показателем эффективности для любого ионного плазменного двигателя.

Термоядерный двигатель

Термоядерный двигатель (рис 30)

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива - изотопов гелия и водорода.

Термоядерный синтез происходит, когда два атома водорода сталкиваются и создают больший атом гелия-4, который испускает энергию в процессе этого.

Синтез может происходить только в условиях крайне горячей среды, температура которой измеряется миллионами градусов. Звезды, состоящие из плазмы, представляют собой единственные природные объекты, достаточно горячие для создания реакции термоядерного синтеза. Плазма, которую часто называют четвертым состоянием вещества, представляет собой ионизированный газ, состоящий из атомов, лишенных некоторой части электронов. Реакция синтеза отвечает за создание 85 % энергии Солнца.

Высокий уровень тепла, необходимый для создания этого типа плазмы, приводит к тому, что ее нельзя заключить в контейнер из любого, известного нам вещества. Тем не менее, плазма хорошо проводит электричество, что позволяет удерживать, управлять и ускорять ее с помощью магнитного поля.

Двигатель на синтезе может обладать удельным импульсом в 300 раз большим, чем обычные химические двигатели. Обычный химический ракетный двигатель обладает импульсом примерно 1300 секунд, что означает следующее: двигатель выдает 1 килограмм тяги на 1 килограмм топлива за 1300 секунд. Ракета на синтезе может обладать импульсом в 500 000 секунд.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100-300 метров в длину и 1-3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов - элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка - антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.
Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

3. ПЕРСПЕКТИВНОСТЬ ЧАСТНЫХ КОМПАНИЙ

В АЭРОКОСМИЧЕСКОМ НАПРАВЛЕНИИ

В последние годы государственные космические агентства разных стран утратили монополию за полеты за пределы Земли. Все чаще происходят успешные запуски частных летательных аппаратов, отправляющихся на орбиту или в суборбитальное пространство. Об перспективности частных компаний я бы хотел рассказать на примере SpaceX.

SpaceX

SpaceX - компания начавшая свою деятельность в 2002 году, основатель Илон Маск. Основной целью SpaceX которой является сократить расходы на полёты в космос и открывая путь к колонизации Марса.

Компания разработала ракеты-носители Falcon 1 и Falcon 9, с самого начала преследуя цель сделать их многоразовыми, и космический корабль Dragon (выводимый на орбиту теми же Falcon 9), предназначенный для пополнения запасов на Международной космической станции. Пассажирская версия корабля Dragon V2 для транспортировки астронавтов на МКС находится в финальной фазе разработки.

SpaceX успешно разработала и запустила в космос ракету-носитель легкого класса Falcon 1 и среднего класса Falcon 9; ракета-носитель тяжёлого класса Falcon Heavy находится в разработке, первый запуск планируется в январе 2018 года.

Falcon 1

Falcon 1 (рис 31)

Первый старт ракеты-носителя от SpaceX произошел 24 марта 2006 года. Космический аппарат Falcon 1 имел в длину 21,7 метра, а также стартовый вес в 38555 килограммов, из которых 670 кг приходилось за полезную нагрузку. Однако запуск окончился провалом еще на этапе работы первой ступени.

Также неудачными для SpaceX оказались второй и третий старты ракеты Falcon 1. Причем, в последнем случае космический аппарат уже нес в себе полезную нагрузку: один американский военный спутник, два малазийских коммерческих микроспутника, а также прах умерших для захоронения в Космосе.

Инвесторы, которые присматривались к амбициозной компании, теряли к ней интерес, а личные средства Илона Маска стремительно заканчивались.

И тогда Маск решил пойти ва-банк. Буквально через два месяца после третьего падения Falcon 1, 28 сентября 2008 года был осуществлен четвертый старт ракеты, который оказался удачным. При этом сам директор SpaceX утверждает, что в случае провала этого запуска, компания перестала бы существовать.

Запуск ракета-носителя Falcon 1

Falcon 9

Ракета-носитель Falcon 9 (рис 32)

Впервые эта ракета-носитель отправилась на орбиту 4 июня 2010 года. На данный момент, осуществлено 18 запусков Falcon 9, все - успешные.

Falcon 9 — семейство одноразовых и частично многоразовых ракет-носителей тяжёлого класса серии Falcon американской компании SpaceX. Falcon 9 состоит из двух ступеней и использует в качестве компонентов топлива керосин марки RP-1 (горючее) и жидкий кислород (окислитель). Цифра «9» в названии обозначает количество жидкостных ракетных двигателей Merlin, установленных на первой ступени ракеты-носителя.

Ракета-носитель с момента первого запуска прошла через две существенные модификации.

Falcon 9 v1.0, запускалась пять раз с 2010 по 2013 год,
Falcon 9 v1.1, пришла ей на смену выполнившая 15 запусков; использование её было завершено в январе 2016 года.
Falcon 9 Full Thrust (FT), последняя версия, впервые запущенная в декабре 2015 года, использует сверхохлаждённые компоненты топлива и максимальную тягу двигателей для увеличения производительности ракеты-носителя на 30 %.

Falcon 9 v1.1 (рис 33)

Первая ступень Falcon 9 может быть повторно использована, на неё установлено оборудование для её возврата и вертикального приземления на посадочную площадку или плавающую платформу autonomous spaceport drone ship. И если первые старты ракеты Falcon 9 не подразумевали ее многоразового действия, то сейчас компания SpaceX постепенно начала отработку технологии многократного использования первой ступени ракеты. А ведь именно эта ее часть является самой дорогой статьей расхода при космических пусках.

Запуск ракета-носителя и приземление первой ступени Falcon 9

22 декабря 2015 года, после запуска на орбиту 11 спутников Orbcomm-G2, первая ступень ракеты-носителя Falcon 9 FT впервые успешно приземлилась на площадку Посадочной зоны.

8 апреля 2016 года, в рамках миссии SpaceX CRS-8, первая ступень ракеты Falcon 9 FT впервые в истории ракетостроения успешно приземлилась на морскую платформу «Of Course I Still Love You».
30 марта 2017 года, та же ступень, после технического обслуживания, была запущена повторно в рамках миссии SES-10 и снова успешно приземлилась на морскую платформу.

Falcon 9 используется для запусков геостационарных коммерческих спутников связи, научно-исследовательских космических аппаратов, грузового космического корабля Dragon в рамках программы Commercial Resupply Services по снабжению Международной космической станции, а также будет использоваться для запуска его пилотируемой версии Dragon V2.

Falcon Heavy

Falcon Heavy (рис 34)

Сейчас компания SpaceX ведет разработку космического аппарата Falcon Heavy, который станет самой мощной в истории ракетой-носителем. При стартовой массе в 1463 тонны она сможет нести до 53 т полезной нагрузки. Ожидается, что при помощи именно этих ракет компания SpaceX будет осуществлять свои миссии на Марс.

По состоянию на 2017 год ракета Falcon Heavy компании SpaceXявляется самой мощной ракетой в мире, которая способна выводить в космос как минимум в два раза больше полезной нагрузки чем любое действующее средство выведения космического назначения. Ракета была специально разработана для возобновления пилотируемых полетов на Луну, а также выполнить первые полеты к Марсу.

Эта ракета способна выводить на орбиту более 54 метрических тонн (119 000 фунтов), что в массовом эквиваленте можно прировнять к 737-му авиалайнеру Boeing с пассажирами, экипажем, багажом и топливом. На геопереходную орбиту Falcon Heavy будет способен выводить до 22,2 метрических тонн, а к Марсу будет способна отправлять отправить около 13,6 тонн.
Falcon Heavy может поднять более чем в два раза больше полезной нагрузки чем самая мощная действующая ракета-носитель Delta IV Heavy компании United Launch Alliance (ULA).

Запуск ракета-носителя и приземление его ступеней

Первая ступень вместе с ускорителями образует мощную связку с 27 ракетных двигателей, которые вместе генерируют более 5 миллионов фунтов тяги при старте, что можно прировнять примерно с восемнадцатью самолетами Boeing 747.
В верхней части первой ступени находится специальная промежуточная структура (interstage), которая вмещает двигатели второй ступени и специальное оборудование расстыковки.

Первая ступень ракеты Falcon Heavy оснащена системой многоразового использования для контролируемого возвращения и посадки первой ступени и ее боковых ускорителей в три разных посадочных места.

Учитывая тот факт, что для возврата первой ступени на посадочную площадку придется снизить массу выводимой полезной нагрузки, в связи с этим скорей всего почти все ее посадки будут выполняться на плавающую платформу autonomous spaceport drone ship. А вот боковые ускорители напротив будут возвращаться к месту старту на посадочные площадки.

Вторая ступень точно такая же, как и у РН Falcon 9. Она оснащена одним двигателем Merlin 1D Vacuum, который рассчитан на то, чтобы гореть около шести минут и производимой тягой 934 кН, может быть выключен и перезапущен несколько раз по мере необходимости для доставки различных полезных нагрузок на разные орбиты.

Dragon

Челнок Dragon (рис 35)

Dragon — частный многоразовый транспортный космический корабль компании SpaceX, разработанный по заказу NASA в рамках программы Commercial Orbital Transportation Services (COTS), предназначенный для доставки и возвращения полезного груза и, в перспективе, людей на Международную космическую станцию. Он может доставлять на орбиту до 3310 килограммов полезного груза и забирать оттуда до 2500 кг.

Необходимость в новых грузовых кораблях возникла у США по причине прекращения полётов Шаттлов.

На 2017 год, и начиная с 2012 года, Dragon является единственным в мире действующим грузовым космическим кораблем, способным возвращаться на Землю.

SpaceX начала разработку космического корабля Dragon в конце 2004 года.

Корабль Dragon стал первым частным космическим кораблём, пристыкованным к Международной космической станции

Согласно контракту, заключенному между NASA и «SpaceX» по программе Commercial Resupply Services, последняя должна была осуществить 12 штатных миссий на МКС, но в марте 2015 года NASA приняла решение продлить контракт ещё на три миссии в 2017 году. Сумма контракта с NASA около 1,6 млрд долларов (увеличилась до около 2 млрд после продления).

Dragon V2

Dragon V2 (рис 36)

Dragon V2 — это новая, усовершенствованная версия космического челнока Dragon от SpaceX, разработанный по заказу НАСА в рамках программы Commercial Crew Development (CCDev), предназначенный для доставки людей на Международную космическую станцию и возвращения их на Землю. Будет выводиться на орбиту ракетой-носителем Falcon 9 со стартового комплекса LC-39A в Космическом центре Кеннеди. Пассажирская версия космического корабля Dragon была представлена 30 мая 2014 года Илоном Маском.

Dragon V2 изнутри (рис 37)

Dragon V2 представляет собой усовершенствованную пилотируемую версию многоразового аппарата Dragon, которая позволит экипажу добираться до МКС и возвращаться на Землю с полным управлением приземлением. В капсуле Dragon V2 одновременно смогут находиться до семи астронавтов. В отличие от грузовой версии, он будет стыковаться с МКС самостоятельно, без использования манипулятора станции. Стоимость полёта в расчёте на одного космонавта будет составлять 20 млн долларов.

Анимация полета Dragon V2

Первоначально в мае 2014 года предполагалась управляемая посадка на двигателях (парашютная схема в качестве резерва), опоры для мягкой посадки. По словам разработчиков, благодаря двигателям SuperDraco аппарат способен приземляться практически в любом месте с точностью вертолёта, а возможность управляемой посадки сохраняется при отказе 2 из 8 двигателей. В случае отказа двигателей посадка выполняется на парашютах. SuperDraco являются первыми двигателями в космической промышленности, изготовление которых возможно по технологии 3D-печати. В дальнейшем было принято решение, что в первых полётах корабль будет приземляться в океан при помощи парашютов, а посадка на землю при помощи двигателей будет использоваться в будущих полётах после завершения процесса сертификации.

Космический челнок Dragon V2 был официально представлен весной 2014 года. На данный момент идут его технические тесты и запуски, однако не в полноценном режиме.

Тесты Dragon V2

Продолжением линейки Dragon может в скором будущем стать космический челнок Red Dragon. Он будет создан непосредственно для Марсианской миссии. Однако подробности этого проекта широкой общественности пока что неизвестны.

Big Falcon Rocket

Big Falcon Rocket (рис 38)

Big Falcon Rocket — так называется универсальная транспортная система, состоящая из многоразовой сверхтяжёлой ракеты и корабля, способного вместить до ста человек. По словам Маска, такую связку можно будет использовать не только для марсианских и лунных миссий, но и для доставки грузов на МКС. А ещё с помощью BFR можно будет доставлять людей из одной точки земного шара в другую
будет способна вывести на низкую опорную орбиту до 150 тонн полезного груза.

Big Falcon Rocket в космосе (рис 39)

Первую ступень носителя собираются оснастить 31 двигателем Raptor. По словам главы SpaceX, в будущем BFR может заменить все существующие ракеты, производимые компанией, так как станет универсальным средством для перевозки грузов и космонавтов. Внутри BFR будет 825 кубических метров свободного пространства, разделённого на 40 кабин и зоны общего пользования. В длину корабль будет около 48 метров, а его вес составит почти 85 тонн. Первые два беспилотных полёта BFR на Марс планируется осуществить уже к 2022 году, а спустя ещё два года в SpaceX собираются отправить на Красную планету людей.

Анимация полета Big Falcon Rocket

Строение Big Falcon Rocket (рис 40)

Ракета BFR очень большая и если ее просто поставить в городе, то будет примерно вот это

Со постановление размеров Big Falcon Rocket (рис 41)

Будучи 130 метров в высоту, это по сути 40-этажный небоскреб. Будучи 13 метров в диаметре, она будет также в три раза тяжелее и мощнее с точки зрения тяги гигантской Saturn V — ракеты миссии «Аполлон» — которая пока что остается самой большой ракетой, построенной людьми.

Вот так она выглядит рядом с другими ракетами:

Со постановление Big Falcon Rocket с другими ракетами (рис 42)

Разница становится еще более разительной, если сравнивать ее с ракетами с позиции массы полезного груза (грузоподъемности груза и людей), которую они могут выводить на орбиту.

Со постановление Big Falcon Rocket с другими ракетами с позиции массы полезного груза (рис 42)

Один двигатель «Раптор» выдает 310 тонн тяги, а у BFR их 42 что в сумме выходит 13 033 тонны тяги.

Ракетные двигатели

С момента основания SpaceX в 2002, компания разработала несколько ракетных двигателей:

  • Kestrel — для второй ступени Falcon 1,
  • Merlin — для первой ступени Falcon 1 и обеих ступеней Falcon 9 и Falcon Heavy,
  • Draco — маневровые двигатели для корабля Dragon и второй ступени Falcon 9 v1.0,
  • SuperDraco — для системы аварийного спасения и управляемой посадки корабля Dragon V2.
  • Также в стадии разработки находится двигатель Raptor, который будет использоваться для будущих полётов на Марс.

Технология посадки на плавучую платформу

Первая ступень ракета-носителя Falcon 9 (рис 47)

Для снижения себестоимости запусков SpaceX использует управляемую посадку первой ступени ракеты-носителя на плавучую платформу — Autonomous spaceport drone ship.
На платформе нет экипажа, она функционирует полностью в автономном режиме, также может управляться дистанционно, с корабля поддержки.
По оценке представителя компании, ожидаемый шанс на успешное возвращение первой ступени составляет 75-80 % для НОО и ГПО 50-60 %.

Схема приземления первой ступени на платформу (рис 48)

Первая успешная посадка первой ступени ракеты-носителя Falcon 9 на плавучую платформу состоялась в апреле 2016 года в рамках миссии SpaceX CRS-8, через месяц SpaceX сумела повторить этот успех, посадив ступень впервые после запуска на геопереходную орбиту спутника связи JCSAT-14. Профиль возвращения ступени в последней миссии был связан с высокими температурными нагрузками при входе в плотные слои атмосферы, вследствие чего ступень получила наибольшие повреждения по сравнению с двумя вернувшимися ранее. В компании приняли решение использовать эту ступень для проведения интенсивных наземных испытаний, как вернувшуюся в наиболее сложных условиях, в качестве ориентира для других посаженых ступеней. Первую севшую на платформу ступень запустили повторно в конце марта 2017 года.

Успешная посадка 1 ступени Falcon 9 на плавучую платформу

Неудачная посадка 1 ступени Falcon 9 на плавучую платформу

Факторы успеха компании SpaceX

Надо признаться, что нынешние успехи компании SpaceX оказались достаточно непредсказуемыми для мирового технического сообщества. Мало кто верил, что Илон Маск сможет достичь желаемого результата - успешного в техническом и коммерческом плане предприятия по частному освоению Космоса.

Среди основных факторов успеха специалисты выделяют следующие пункты:

1. Частный характер компании SpaceX.
Опыт последнего десятилетия показал, что бизнес практически на всех уровнях является куда более эффективным собственником, чем государственные структуры. Касается это и космической отрасти.

Частная компания SpaceX куда сильнее нацелена на достижение окончательного результата как можно быстрее и дешевле, чем государственное агентство NASA. Последнее многократно критиковалось за раздутые бюджеты, созданные исключительно для их освоения.

2. Низкая себестоимость космических полетов
С самого начала своего существования компания SpaceX планировала использовать многоразовые космические аппараты. Это позволит снизить себестоимость каждого пуска почти в два раза.

Также на себестоимость космических полетов сильно влияет малое количество сотрудников в компании SpaceX. На данный момент, оно исчисляется тремя с половиной тысячами человек. Для сравнения, в NASA числится более 18 тысяч сотрудников.

3. Инновационность
Компания SpaceX видит свой успех в максимальном внедрении инновационных технологий. Частная фирма имеет возможность привлекать к сотрудничеству лучших в мире специалистов в тех или иных сферах деятельности. Работать в фирме Илона Маска - это мечта для миллионов инженеров, программистов и администраторов. Все они нацелены на успех, на максимально стремительное и безграничное развитие.

4. Государственная поддержка
Однако успеха частной компании SpaceX не было бы и без поддержки со стороны государства. К примеру, агентство NASA вложило в проекты этого детища Илона Маска сотни миллионов долларов, называя их оплатой за будущие старты. Это происходило даже в те моменты, когда никто не мог гарантировать успешность инициатив SpaceX.

Заключение

Смотря на перспективные разработки аэрокосмического транспорта в наше время, можно сказать что будущее уже наступило! То о чем люди мечтали многие годы начинают сбываться. Уже через какие то 5-10 лет люди начнут колонизировать марс это стало возможным из за возвращаемых ступеней ракета-носителей что существенно сократит расходы на перевозку и даст путь к колонизации но и не только, это также даст возможность расширению космических станций, уменьшение цены на запуск искусственных спутников и становление доступности полетов обычным людям. Это все очень вдохновляет делать что-либо! Меня вдохновило написать данную статью, которая может разжечь искру в других и вдохновить сделать что-то еще. Для того что бы изменить мир в лучшую сторону нужно всего лишь начать с себя и тогда мир вокруг тебя изменится сам. Смотря на компанию SpaceX и на то что делает Илон Маск какие грандиозные проекты, он воплощает в жизнь можно проверить что возможно все!


Британская аэрокосмическая фирма представила концепт самолёта без иллюминаторов. Вместо них они предлагают установить дисплеи, на которых бы отображались события, происходящие за бортом, демонстрировались фильмы. Самолёты без окон способны кардинально изменить облик гражданской авиации, при этом значительно снизится расход топлива.

Дизайн частного самолёта разрабатывали специалисты французской компании, проект они представили ещё в августе. Вместо иллюминаторов они предложили использовать дисплеи, демонстрирующие фильмы для отдыха и презентации для работы. Технический отдел говорит, что отсутствие окон поможет снизить вес судна, следовательно, уменьшится расход топлива, стоимость обслуживания, а освободившееся пространство расширяет возможности для усовершенствования интерьера. Гарет Дэвис, главный дизайнер «Technicon Design», компании предложившей проект, сказал, что некоторые элементы, например, гибкие дисплеи, уже можно воплотить в реальность.

Американская фирма Spike Aerospace планирует представить подобный самолёт уже в 2018 году. Это будет роскошный Spike S-512 Supersonic Jet, способный долететь от Нью-Йорка до Лондона за 4 часа с 12-18 пассажирами. Бостонская компания тоже видит самолёт будущего без окон. В результате пассажирам не придётся прятаться от солнца, то поднимая, то опуская жалюзи. Исчезнет и монотонность в полёте. Дизайнеры считают, что по большому счёту пассажиры мало что видят во время полёта – пару звёзд, луну, бескрайний океан, облака. Вес самолёта тоже уменьшится, позволив экономить топливо. Стены самолёта превратятся в огромные тонкие дисплеи, демонстрирующие окружающие судно панорамы. В качестве альтернативы можно будет посмотреть фильм, слайды, документы.

Правда, разработчики признают и возможные проблемы. Во-первых, у многих может повыситься чувство тревожности в замкнутом пространстве, когда не видно, что происходит снаружи. Во-вторых, видеть нужно не только пассажирам, но и спасателям в случае необходимости нужно видеть, что происходит внутри, в противном случае они будут действовать вслепую. И, в-третьих, возможны проблемы с людьми, страдающими от укачивания. Обычно такие пассажиры просто периодически смотрят в окно, находят для себя ориентир. Здесь же они будут лишены такой возможности, экраны не смогут им помочь.

Центр технологических новшеств (Centre for Process Innovation) тоже предлагает свой самолёт с огромными OLED дисплеями, на которые будет передаваться изображение с камер, установленных снаружи. Будет возможность подключиться к интернету. Уменьшение веса самолёта – самая важная проблема, которую стараются решить инженеры. Вот они и решили обратиться к идее строительства по аналогии с грузовыми самолётами. А пока проект находится в процессе доработки.

Современные технологии и открытия выводят освоение космоса на совершенно иной уровень, однако межзвездные перелеты пока еще остаются мечтой. Но так ли она нереальна и недостижима? Что мы можем уже сейчас и чего ждать в ближайшем будущем?

11.10.2011, ВТ, 17:27, Мск

Телескопа "Кеплер" астрономы обнаружили 54 потенциально обитаемые экзопланеты. Эти далекие миры находятся в обитаемой зоне, т.е. на определенном расстоянии от центральной звезды, позволяющем поддерживать на поверхности планеты воду в жидком виде.

Однако ответ на главный вопрос, одиноки ли мы во Вселенной, получить затруднительно - из-за огромной дистанции, разделяющей Солнечную систему и наших ближайших соседей. Например, «перспективная» планета Gliese 581g находится на расстоянии в 20 световых лет – это достаточно близко по космическим меркам, но пока слишком далеко для земных инструментов.

Обилие экзопланет в радиусе 100 и менее световых лет от Земли и огромный научный и даже цивилизационный интерес, которые они представляют для человечества, заставляют по-новому взглянуть на доселе фантастическую идею межзвездных перелетов.

Ближайшие к нашей Солнечной системе звезды

Полет к другим звездам - это, разумеется, вопрос технологий. Более того, существуют несколько возможностей для достижения столь далекой цели, и выбор в пользу того или иного способа еще не сделан.

Дорогу беспилотникам

Человечество уже отправляло в космос межзвездные аппараты: зонды Pioneer и Voyager. В настоящее время они покинули пределы Солнечной системы, однако их скорость не позволяет говорить о сколь-нибудь быстром достижении цели. Так, Voyager 1, движущийся со скоростью около 17 км/с, даже к ближайшей к нам звезде Проксима Центавра (4,2 световых года) будет лететь невероятно долгий срок - 17 тысяч лет.

Очевидно, что с современными ракетными двигателями мы никуда дальше Солнечной системы не выберемся: для транспортировки 1 кг груза даже к недалекой Проксиме Центавра нужны десятки тысяч тонн топлива. При этом с ростом массы корабля увеличивается количество необходимого топлива, и для его транспортировки нужно дополнительное горючее. Замкнутый круг, ставящий крест на баках с химическим топливом - постройка космического судна весом в миллиарды тонн представляется совершенно невероятной затеей. Простые вычисления по формуле Циолковского демонстрируют, что для ускорения космических аппаратов с ракетным двигателем на химическом топливе до скорости примерно в 10% скорости света потребуется больше горючего, чем доступно в известной вселенной.

Реакция термоядерного синтеза производит энергии на единицу массы в среднем в миллион раз больше, чем химические процессы сгорания. Именно поэтому в 1970-х годах в НАСА обратили внимание на возможность применения термоядерных ракетных двигателей. Проект беспилотного космического корабля Дедал предполагал создание двигателя, в котором небольшие гранулы термоядерного топлива будут подаваться в камеру сгорания и поджигаться пучками электронов. Продукты термоядерной реакции вылетают из сопла двигателя и придают кораблю ускорение.


Космический корабль Дедал в сравнении с небоскребом Эмпайр стейт Билдинг

Дедал должен был взять на борт 50 тыс. тонн топливных гранул диаметром 40 и 20 мм. Гранулы состоят из ядра с дейтерием и тритием и оболочки из гелия-3. Последний составляет лишь 10-15 % от массы топливной гранулы, но, собственно, и является топливом. Гелия-3 в избытке на Луне, а дейтерий широко используется в атомной промышленности. Дейтериевое ядро служит детонатором для зажигания реакции синтеза и провоцирует мощную реакцию с выбросом реактивной плазменной струи, которая управляется мощным магнитным полем. Основная молибденовая камера сгорания двигателя Дедала должна была иметь вес более 218 тонн, камера второй ступени – 25 тонн. Магнитные сверхпроводящие катушки тоже под стать огромному реактору: первая весом 124,7 т, а вторая - 43,6 т. Для сравнения: сухая масса шаттла менее 100 т.

Полет Дедала планировался двухэтапным: двигатель первой ступени должен был проработать более 2 лет и сжечь 16 млрд топливных гранул. После отделения первой ступени почти два года работал двигатель второй ступени. Таким образом, за 3,81 года непрерывного ускорения Дедал достиг бы максимальной скорости в 12,2% скорости света. Расстояние до звезды Барнарда (5,96 световых лет) такой корабль преодолеет за 50 лет и сможет, пролетая сквозь далекую звездную систему, передать по радиосвязи на Землю результаты своих наблюдений. Таким образом, вся миссия займет около 56 лет.


Тор Стенфорда – колоссальное сооружение с целыми городами внутри обода

Несмотря на большие сложности с обеспечением надежности многочисленных систем Дедала и его огромной стоимостью, этот проект реализуем на современном уровне технологий. Более того, в 2009 году команда энтузиастов возродила работу над проектом термоядерного корабля. В настоящее время проект Икар включает 20 научных тем по теоретической разработке систем и материалов межзвездного корабля.

Таким образом, уже сегодня возможны беспилотные межзвездные полеты на расстояние до 10 световых лет, которые займут около 100 лет полета плюс время на путешествие радиосигнала обратно на Землю. В этот радиус укладываются звездные системы Альфа Центавра, Звезда Барнарда, Сириус, Эпсилон Эридана, UV Кита, Росс 154 и 248, CN Льва, WISE 1541-2250. Как видим, рядом с Землей достаточно объектов для изучения с помощью беспилотных миссий. Но если роботы найдут что-то действительно необычное и уникальное, например, сложную биосферу? Сможет ли отправиться к далеким планетам экспедиция с участием людей?

Полет длиною в жизнь

Если беспилотный корабль мы можем начинать строить уже сегодня, то с пилотируемым дело обстоит сложнее. Прежде всего остро стоит вопрос времени полета. Возьмем ту же звезду Барнарда. К пилотируемому полету космонавтов придется готовить со школьной скамьи, поскольку даже если старт с Земли состоится в их 20-летие, то цели полета корабль достигнет к 70-летию или даже 100-летию (учитывая необходимость торможения, в котором нет нужды в беспилотном полете). Подбор экипажа в юношеском возрасте чреват психологической несовместимостью и межличностными конфликтами, а возраст в 100 не дает надежду на плодотворную работу на поверхности планеты и на возвращение домой.

Однако есть ли смысл возвращаться? Многочисленные исследования НАСА приводят к неутешительному выводу: длительное пребывание в невесомости необратимо разрушит здоровье космонавтов. Так, работа профессора биологии Роберта Фиттса с космонавтами МКС показывает, что даже несмотря на активные физические упражнения на борту космического корабля, после трехлетней миссии на Марс крупные мышцы, например икроножные, станут на 50% слабее. Аналогично снижается и минеральная плотность костной ткани. В результате трудоспособность и выживаемость в экстремальных ситуациях уменьшается в разы, а период адаптации к нормальной силе тяжести составит не менее года. Полет же в невесомости на протяжении десятков лет поставит под вопрос сами жизни космонавтов. Возможно, человеческий организм сможет восстановиться, например, в процессе торможения с постепенно нарастающей гравитацией. Однако риск гибели все равно слишком высок и требует радикального решения.

Сложной остается и проблема радиации. Даже вблизи Земли (на борту МКС) космонавты находятся не более полугода из-за опасности радиационного облучения. Межпланетный корабль придется оснастить тяжелой защитой, но и при этом остается вопрос влияния радиации на организм человека. В частности, на риск онкологических заболеваний, развитие которых в невесомости практически не изучено. В начале этого года ученый Красимир Иванов из Германского аэрокосмического центра в Кельне опубликовал результаты интересного исследования поведения клеток меланомы (самой опасной формы рака кожи) в невесомости. По сравнению с раковыми клетками, выращенными при нормальной силе тяжести, клетки, проведшие в невесомости 6 и 24 часа, менее склонны к метастазам. Это вроде бы хорошая новость, но только на первый взгляд. Дело в том, что такой «космический» рак способен находиться в состоянии покоя десятилетия, и неожиданно масштабно распространяться при нарушении работы иммунной системы. Кроме этого, исследование дает понять, что мы еще мало знаем о реакции человеческого организма на длительное пребывание в космосе. Сегодня космонавты, здоровые сильные люди, проводят там слишком мало времени, чтобы переносить их опыт на длительный межзвездный перелет.


Проект Биосфера-2 начинался с красивой, тщательно подобранной и пышущей здоровьем экосистемы…

К сожалению, решить проблему невесомости на межзвездном корабле не так просто. Доступная нам возможность создания искусственной силы тяжести при помощи вращения жилого модуля имеет ряд сложностей. Чтобы создать земную гравитацию, даже колесо диаметром 200 м придется вращать со скоростью 3 оборота в минуту. При таком быстром вращении сила Кариолиса будет создавать совершенно непереносимые для вестибулярного аппарата человека нагрузки, вызывая тошноту и острые приступы морской болезни. Единственное решение этой проблемы - Тор Стенфорда, разработанный учеными Стенфордского университета в 1975 году. Это - огромное кольцо диаметром 1,8 км, в котором могли бы жить 10 тыс. космонавтов. Благодаря своим размерам оно обеспечивает силу тяжести на уровне 0.9-1,0 g и вполне комфортное проживание людей. Однако даже на скорости вращения ниже, чем один оборот в минуту, люди все равно будут испытывать легкий, но ощутимый дискомфорт. При этом если подобный гигантский жилой отсек будет построен, даже небольшие сдвиги в развесовке тора повлияют на скорость вращения и вызовут колебания всей конструкции.


…а закончился экологической катастрофой

В любом случае корабль на 10 тыс. человек – сомнительная затея. Для создания надежной экосистемы для такого числа людей нужно огромное количество растений, 60 тыс. кур, 30 тыс. кроликов и стадо крупного рогатого скота. Только это может обеспечить диету на уровне 2400 калорий в день. Однако все эксперименты по созданию таких замкнутых экосистем неизменно заканчиваются провалом. Так, в ходе крупнейшего эксперимента «Биосфера-2» компании Space Biosphere Ventures была построена сеть герметичных зданий общей площадью 1,5 га с 3 тыс. видами растений и животных. Вся экосистема должна была стать самоподдерживающейся маленькой «планетой», в которой жили 8 человек. Эксперимент длился 2 года, но уже после нескольких недель начались серьезные проблемы: микроорганизмы и насекомые стали неконтролируемо размножаться, потребляя кислород и растения в слишком больших количествах, также оказалось, что без ветра растения стали слишком хрупкими. В результате локальной экологической катастрофы люди начали терять вес, количество кислорода снизилось с 21% до 15%, и ученым пришлось нарушить условия эксперимента и поставлять восьмерым «космонавтам» кислород и продукты.

Таким образом, создание сложных экосистем представляется ошибочным и опасным путем обеспечения экипажа межзвездного корабля кислородом и питанием. Для решения этой проблемы понадобятся специально сконструированные организмы с измененными генами, способные питаться светом, отходами и простыми веществами. Например, большие современные цеха по производству пищевой водоросли хлореллы могут производить до 40 т суспензии в сутки. Один полностью автономный биореактор весом несколько тонн может производить до 300 л суспензии хлореллы в сутки, чего достаточно для питания экипажа в несколько десятков человек. Генетически модифицированная хлорелла могла бы не только удовлетворять потребности экипажа в питательных веществах, но и перерабатывать отходы, включая углекислый газ. Сегодня процесс генетического инжиниринга микроводорослей стал обычным делом, и существуют многочисленные образцы, разработанные для очистки сточных вод, выработки биотоплива и т.д.

Замороженный сон

Практически все вышеперечисленные проблемы пилотируемого межзвездного полета могла бы решить одна очень перспективная технология – анабиоз или как его еще называют криостазис. Анабиоз - это замедление процессов жизнедеятельности человека как минимум в несколько раз. Если удастся погрузить человека в такую искусственную летаргию, замедляющую обмен веществ в 10 раз, то за 100-летний полет он постареет во сне всего на 10 лет. При этом облегчается решение проблем питания, снабжения кислородом, психических расстройств, разрушения организма в результате воздействия невесомости. Кроме того, защитить отсек с анабиозными камерами от микрометеоритов и радиации проще, чем обитаемую зону большого объема.

К сожалению, замедление процессов жизнедеятельности человека – это чрезвычайно сложная задача. Но в природе существуют организмы, способные впадать в спячку и увеличивать продолжительность своей жизни в сотни раз. Например, небольшая ящерица под названием сибирский углозуб способна впадать в спячку в тяжелые времена и десятилетиями оставаться в живых, даже будучи вмороженной в глыбу льда с температурой минус 35-40°С. Известны случаи, когда углозубы проводили в спячке около 100 лет и, как ни в чем не бывало, оттаивали и убегали от удивленных исследователей. При этом обычная «непрерывная» продолжительность жизни ящерицы не превышает 13 лет. Удивительная способность углозуба объясняется тем, что его печень синтезирует большое количество глицерина, почти 40 % от веса тела, что защищает клетки от низких температур.


Биореактор для выращивания генетически модифицированных микроводорослей и других микроорганизмов может решить проблему питания и переработки отходов

Главное препятствие для погружения человека в криостазис – вода, из которой на 70% состоит наше тело. При замерзании она превращается в кристаллики льда, увеличиваясь в объеме на 10%, из-за чего разрывается клеточная мембрана. Кроме того, по мере замерзания растворенные внутри клетки вещества мигрируют в оставшуюся воду, нарушая внутриклеточные ионообменные процессы, а также организацию белков и других межклеточных структур. В общем, разрушение клеток во время замерзания делают невозможным возвращение человека к жизни.

Однако существует перспективный путь решения этой проблемы - клатратные гидраты. Они были обнаружены в далеком 1810 году, когда британский ученый сэр Хэмфри Дэви подал в воду хлор под высоким давлением и стал свидетелем образования твердых структур. Это и были клатратные гидраты – одна из форм водяного льда, в который включен посторонний газ. В отличие от кристаллов льда, клатратные решетки менее твердые, не имеют острых граней, зато имеют полости, в которые могут «спрятаться» внутриклеточные вещества. Технология клатратного анабиоза была бы проста: инертный газ, например, ксенон или аргон, температура чуть ниже нуля, и клеточный метаболизм начинает постепенно замедляться, пока человек не впадает в криостазис. К сожалению, для образования клатратных гидратов требуется высокое давление (около 8 атмосфер) и весьма высокая концентрация газа, растворенного в воде. Как создать такие условия в живом организме, пока неизвестно, хотя некоторые успехи в этой области есть. Так, клатраты способны защитить ткани сердечной мышцы от разрушения митохондрий даже при криогенных температурах (ниже 100 градусов Цельсия), а также предотвратить повреждение клеточных мембран. Об экспериментах по клатратному анабиозу на людях речь пока не идет, поскольку коммерческий спрос на технологии криостазиса невелик и исследования на эту тему проводятся в основном небольшими компаниями, предлагающими услуги по заморозке тел умерших.

Полет на водороде

В 1960 году физик Роберт Бассард предложил оригинальную концепцию прямоточного термоядерного двигателя, который решает многие проблемы межзвездного перелета. Суть заключается в использовании водорода и межзвездной пыли, присутствующих в космическом пространстве. Космический корабль с таким двигателем сначала разгоняется на собственном горючем, а затем разворачивает огромную, диаметром тысячи километров воронку магнитного поля, которое захватывает водород из космического пространства. Этот водород используется в качестве неисчерпаемого источника топлива для термоядерного ракетного двигателя.

Применение двигателя Бассарда сулит огромные преимущества. Прежде всего за счет «дармового» топлива есть возможность двигаться с постоянным ускорением в 1 g, а значит - отпадают все проблемы, связанные с невесомостью. Кроме того двигатель позволяет разогнаться до огромной скорости - в 50% от скорости света и даже больше. Теоретически, двигаясь с ускорением в 1 g, расстояние в 10 световых лет корабль с двигателем Бассарда может преодолеть примерно за 12 земных лет, причем для экипажа из-за релятивистских эффектов прошло бы всего 5 лет корабельного времени.

К сожалению, на пути создания корабля с двигателем Бассарда стоит ряд серьезных проблем, которые нельзя решить на современном уровне технологий. Прежде всего необходимо создать гигантскую и надежную ловушку для водорода, генерирующую магнитные поля гигантской силы. При этом она должна обеспечивать минимальные потери и эффективную транспортировку водорода в термоядерный реактор. Сам процесс термоядерной реакции превращения четырех атомов водорода в атом гелия, предложенный Бассардом, вызывает немало вопросов. Дело в том, что эта простейшая реакция трудноосуществима в прямоточном реакторе, поскольку она слишком медленно идет и, в принципе, возможна только внутри звезд.

Однако прогресс в изучении термоядерного синтеза позволяет надеяться, что проблема может быть решена, например, использованием «экзотических» изотопов и антиматерии в качестве катализатора реакции.


Сибирский углозуб может впадать в анабиоз на десятилетия

Пока изыскания на тему двигателя Бассарда лежат исключительно в теоретической плоскости. Необходимы расчеты, базирующиеся на реальных технологиях. Прежде всего, нужно разработать двигатель, способный произвести энергию, достаточную для питания магнитной ловушки и поддержания термоядерной реакции, производства антиматерии и преодоления сопротивления межзвездной среды, которая будет тормозить огромный электромагнитный «парус».

Антиматерия в помощь

Возможно, это звучит странно, но сегодня человечество ближе к созданию двигателя, работающего на антиматерии, чем к интуитивно понятному и простому на первый взгляд прямоточному двигателю Бассарда.

Термоядерный реактор на дейтерии и тритии может генерировать 6х1011 Дж на 1 г водорода – выглядит внушительно, особенно если учесть, что это в 10 миллионов раз более эффективно, чем химические ракеты. Реакция материи и антиматерии производит приблизительно на два порядка больше энергии. Когда речь идет об аннигиляции, расчеты ученого Марка Миллиса и плод его 27-летнего труда не выглядят такими уж удручающими: Миллис рассчитал затраты энергии на запуск космического корабля к Альфе Центавра и выяснил, что они составят 10 18 Дж, т.е. практически годовое потребление электричества всем человечеством. Но это всего один килограмм антивещества.


Зонд разработки Hbar Technologies будет иметь тонкий парус из углеродного волокна, покрытого ураном 238. Врезаясь в парус, антиводород будет аннигилировать и создавать реактивную тягу

В результате аннигиляции водорода и антиводорода образуется мощный поток фотонов, скорость истечения которого достигает максимума для ракетного двигателя, т.е. скорости света. Это идеальный показатель, который позволяет добиться очень высоких околосветовых скоростей полета космического корабля с фотонным двигателем. К сожалению, применить антиматерию в качестве ракетного топлива очень непросто, поскольку во время аннигиляции происходят вспышки мощнейшего гамма-излучения, которое убьет космонавтов. Также пока не существует технологий хранения большого количества антивещества, да и сам факт накопления тонн антиматерии, даже в космосе далеко от Земли, является серьезной угрозой, поскольку аннигиляция даже одного килограмма антиматерии эквивалентна ядерному взрыву мощностью 43 мегатонны (взрыв такой силы способен превратить в пустыню треть территории США). Стоимость антивещества является еще одним фактором, осложняющим межзвездный полет на фотонной тяге. Современные технологии производства антивещества позволяют изготовить один грамм антиводорода по цене в десяток триллионов долларов.

Однако большие проекты по исследованию антиматерии приносят свои плоды. В настоящее время созданы специальные хранилища позитронов, «магнитные бутылки», представляющие собой охлажденные жидким гелием емкости со стенками из магнитных полей. В июне этого года ученым ЦЕРНа удалось сохранить атомы антиводорода в течение 2000 секунд. В Университете Калифорнии (США) строится крупнейшее в мире хранилище антивещества, в котором можно будет накапливать более триллиона позитронов. Одной из целей ученых Калифорнийского университета является создание переносных емкостей для антивещества, которые можно использовать в научных целях вдали от больших ускорителей. Этот проект пользуется поддержкой Пентагона, который заинтересован в военном применении антиматерии, так что крупнейший в мире массив магнитных бутылок вряд ли будет ощущать недостаток финансирования.

Современные ускорители смогут произвести один грамм антиводорода за несколько сотен лет. Это очень долго, поэтому единственный выход: разработать новую технологию производства антиматерии или объединить усилия всех стран нашей планеты. Но даже в этом случае при современных технологиях нечего и мечтать о производстве десятков тонн антиматерии для межзвездного пилотируемого полета.

Однако все не так уж печально. Специалисты НАСА разработали несколько проектов космических аппаратов, которые могли бы отправиться в глубокий космос, имея всего один микрограмм антивещества. В НАСА полагают, что совершенствование оборудования позволит производить антипротоны по цене примерно 5 млрд долл. за 1 грамм.

Американская компания Hbar Technologies при поддержке НАСА разрабатывает концепцию беспилотных зондов, приводимых в движение двигателем, работающем на антиводороде. Первой целью этого проекта является создание беспилотного космического аппарата, который смог бы менее чем за 10 лет долететь к поясу Койпера на окраине Солнечной системы. Сегодня долететь в такие удаленные точки за 5-7 лет невозможно, в частности, зонд НАСА New Horizons пролетит сквозь пояс Койпера через 15 лет после запуска.

Зонд, преодолевающий расстояние в 250 а.е. за 10 лет, будет очень маленьким, с полезной нагрузкой всего 10 мг, но ему и антиводорода потребуется немного – 30 мг. Теватрон выработает такое количество за несколько десятилетий, и ученые смогли бы протестировать концепцию нового двигателя в ходе реальной космической миссии.

Предварительные расчеты также показывают, что подобным образом можно отправить небольшой зонд к Альфе Центавра. На одном грамме антиводорода он долетит к далекой звезде за 40 лет.

Может показаться, что все вышеописанное - фантастика и не имеет отношения к ближайшему будущему. К счастью, это не так. Пока внимание общественности приковано к мировым кризисам, провалам поп-звезд и прочим актуальным событиям, остаются в тени эпохальные инициативы. Космическое агентство НАСА запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технологического фундамента для межпланетных и межзвездных полетов. Эта программа не имеет аналогов в истории человечества и должна привлечь ученых, инженеров и энтузиастов других профессий со всего мира. С 30 сентября по 2 октября 2011 года в Орландо (штат Флорида) состоится симпозиум, на котором будут обсуждаться различные технологии космических полетов. На основании результатов таких мероприятий специалисты НАСА будут разрабатывать бизнес-план по оказанию помощи определенным отраслям и компаниям, которые разрабатывают пока отсутствующие, но необходимые для будущего межзвездного перелета технологии. Если амбициозная программа НАСА увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться с такой же легкостью, как сегодня перелетаем с материка на материк.

Михаил Левкевич

Распечатать