Чем лаборатория отличается от обсерватории. Астрономическая обсерватория — что это? Лучшие современные зарубежные обсерватории

Обсерватория - это научное учреждение, в котором сотрудники - учёные разных специальностей - наблюдают за природными явлениями, анализируют наблюдения, на их основе продолжают изучать то, что происходит в природе.


Особенно распространены астрономические обсерватории: их мы и представляем обычно, когда слышим это слово. В них исследуют звёзды, планеты, крупные звёздные скопления, прочие космические объекты.

Но есть и другие виды этих учреждений:

— геофизические - для исследования атмосферы, полярного сияния, магнитосферы Земли, свойств горных пород, состояния земной коры в сейсмоактивных регионах и других подобных вопросов и объектов;

— авроральные - для изучения полярного сияния;

— сейсмические - для постоянной и детальной регистрации всех колебаний земной коры и их изучения;

— метеорологические - для изучения погодных условий и выявления погодных закономерностей;

— обсерватории космических лучей и ряд других.

Где строят обсерватории?

Обсерватории строят в тех местностях, которые дают учёным максимум материала для исследований.


Метеорологические - по всем уголкам Земли; астрономические - в горах (там воздух чистый, сухой, не «ослеплён» городским освещением), радиообсерватории - на дне глубоких долин, недоступных искусственным радиопомехам.

Астрономические обсерватории

Астрономические - самый древний вид обсерваторий. Астрономами в древности были жрецы, они вели календарь, изучали перемещение и Солнца по небосводу, занимались предсказаниями событий, судеб людей в зависимости от соположения небесных тел. Это были астрологи - люди, которых боялись даже самые свирепые правители.

Древние обсерватории располагались обычно в верхних комнатах башен. Инструментами служили прямая планка, оснащённая скользящим визиром.

Великим астрономом древности стал Птолемей, который собрал в Александрийской библиотеке огромное число астрономических свидетельств, записей, сформировал каталог положений и силы блеска для 1022 звёзд; изобрёл математическую теорию перемещения планет и составил таблицы движения - этими таблицами учёные пользовались более 1 000 лет!

В Средневековье обсерватории особенно активно строят на Востоке. Известна гигантская самаркандская обсерватория, где Улугбек - потомок легендарного Тимура-Тамерлана - вёл наблюдения за перемещением Солнца, описывая его с небывалой до того точностью. Обсерватория радиусом 40 м имела вид секстанта-траншеи с ориентацией на юг и отделкой мрамором.

Величайшим астрономом европейского средневековья, перевернувшим мир почти буквально, стали Николай Коперник, который Солнце «переместил» в центр мироздания вместо Земли и предложил считать Землю ещё одной планетой.

А одной из самых продвинутых обсерваторий был Ураниборг, или Небесный замок, - владение Тихо Браге, датского придворного астронома. Обсерватория была оснащена лучшим, самым точным на то время инструментом, имела собственные мастерские по изготовлению инструмента, химическую лабораторию, хранилище книг и документов и даже печатный станок для собственных нужд и бумажную мельницу для производства бумаги - роскошь по тем временам королевская!

В 1609 году появился первый телескоп - главный инструмент любой астрономической обсерватории. Создателем его стал Галилей. Это был телескоп-рефлектор: лучи в нём преломлялись, проходя сквозь ряд стеклянных линз.

Усовершенствовал телескоп Кеплер: в его приборе изображение было перевёрнутым, но более качественным. Эта особенность стала в итоге стандартной для телескопических приборов.

В XVII веке, с развитием мореплавания, начали появляться государственные обсерватории - парижская Королевская, Королевская Гринвичская, обсерватории в Польше, Дании, Швеции. Революционным последствием их строительства и деятельности стало введение стандарта времени: его теперь регламентировали световыми сигналами, а потом - с помощью телеграфа, радио.

В 1839 году была открыта Пулковская обсерватория (Санкт-Петербург), ставшая одной из самых известных в мире. Сегодня в России действует более 60 обсерваторий. Одна из самых больших в международном масштабе - Пущинская радиоастрономическая обсерватория, созданная в 1956 году.

В Звенигородской обсерватории (в 12 км от Звенигорода) работает единственная в мире камера ВАУ, способная осуществлять массовые наблюдения за геостанционными спутниками. В 2014 году МГУ открыл обсерваторию на горе Шаджатмаз (Карачаево-Черкессия), где установили самый большой для России современный телескоп, диаметр которого равен 2,5 м.

Лучшие современные зарубежные обсерватории

Мауна-кеа - находится на Большом гавайском острове, имеет самый большой на Земле арсенал высокоточного оборудования.

Комплекс VLT («огромный телескоп») - расположен в Чили, в «пустыне телескопов» Атакама.


Йеркская обсерватория в Соединённых Штатах - «место зарождения астрофизики».

Обсерватория ORM (Канарские острова) - имеет оптический телескоп с наибольшей апертурой (способностью собирать свет).

Аресибо - находится в Пуэрто-Рико и владеет радиотелескопом (305 м) с одной из самых больших в мире апертур.

Обсерватория университета Токио (Атакама) - самая высокая на Земле, находится у вершины горы Серро-Чайнантор.

ОБСЕРВАТОРИЯ
учреждение, где ученые наблюдают, изучают и анализируют природные явления. Наиболее известны астрономические обсерватории для исследования звезд, галактик, планет и других небесных объектов. Существуют также метеорологические обсерватории для наблюдения погоды; геофизические обсерватории для изучения атмосферных явлений, в частности, - полярных сияний; сейсмические станции для регистрации колебаний, возбужденных в Земле землетрясениями и вулканами; обсерватории для наблюдения космических лучей и нейтрино. Многие обсерватории оснащены не только серийными приборами для регистрации природных явлений, но и уникальными инструментами, обеспечивающими в конкретных условиях наблюдения максимально высокие чувствительность и точность. В прежние времена обсерватории, как правило, сооружали вблизи университетов, но затем стали размещать в местах с наилучшими условиями для наблюдения изучаемых явлений: сейсмические обсерватории - на склонах вулканов, метеорологические - равномерно по всему земному шару, авроральные (для наблюдения за полярными сияниями) - на расстоянии около 2000 км от магнитного полюса Северного полушария, где проходит полоса интенсивных сияний. Астрономическим обсерваториям, в которых используются оптические телескопы для анализа света космических источников, требуется чистая и сухая атмосфера, свободная от искусственного освещения, поэтому их стараются строить высоко в горах. Радиообсерватории часто размещают в глубоких долинах, со всех сторон закрытых горами от радиопомех искусственного происхождения. Тем не менее, поскольку в обсерваториях трудится квалифицированный персонал и регулярно приезжают ученые, по возможности стараются размещать обсерватории не очень далеко от научных и культурных центров и транспортных узлов. Впрочем, развитие средств связи делает эту проблему все менее актуальной. В этой статье речь идет об астрономических обсерваториях. Дополнительно про обсерватории и научные станции других типов рассказано в статьях:
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ ;
ВУЛКАНЫ ;
ГЕОЛОГИЯ ;
ЗЕМЛЕТРЯСЕНИЯ ;
МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ ;
НЕЙТРИННАЯ АСТРОНОМИЯ ;
РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ ;
РАДИОАСТРОНОМИЯ .
ИСТОРИЯ АСТРОНОМИЧЕСКИХ ОБСЕРВАТОРИЙ И ТЕЛЕСКОПОВ
Древний мир. Наиболее старые дошедшие до нас факты астрономических наблюдений связаны с древними цивилизациями Среднего Востока. Наблюдая, записывая и анализируя движение по небу Солнца и Луны, жрецы вели счет времени и календарь, предсказывали важные для сельского хозяйства сезоны, а также занимались астрологическими прогнозами. Измеряя с помощью простейших приборов перемещения небесных светил, они обнаружили, что взаимное расположение звезд на небе остается неизменным, а Солнце, Луна и планеты движутся относительно звезд и притом весьма сложно. Жрецы отмечали редкие небесные явления: лунные и солнечные затмения, появление комет и новых звезд. Астрономические наблюдения, приносящие практическую пользу и помогающие формировать мировоззрение, находили определенную поддержку как у религиозных авторитетов, так и у гражданских правителей разных народов. На многих сохранившихся глиняных табличках из древних Вавилона и Шумера записаны астрономические наблюдения и вычисления. В те времена, как и сейчас, обсерватория служила одновременно мастерской, хранилищем приборов и центром сбора данных. См. также
АСТРОЛОГИЯ ;
ВРЕМЕНА ГОДА ;
ВРЕМЯ ;
КАЛЕНДАРЬ . Об астрономических инструментах, применявшихся до эпохи Птолемея (ок. 100 - ок. 170 н.э.), известно мало. Птолемей вместе с другими учеными собрал в огромной библиотеке Александрии (Египет) множество разрозненных астрономических записей, сделанных в различных странах за предшествующие века. Используя наблюдения Гиппарха и свои собственные, Птолемей составил каталог положений и блеска 1022 звезд. Вслед за Аристотелем он поместил Землю в центр мира и считал, что все светила обращаются вокруг нее. Вместе с коллегами Птолемей провел систематические наблюдения движущихся светил (Солнце, Луна, Меркурий, Венера, Марс, Юпитер, Сатурн) и разработал детальную математическую теорию для предсказания их будущего положения по отношению к "неподвижным" звездам. С ее помощью Птолемей рассчитал таблицы движения светил, которые затем использовались более тысячи лет.
См. также ГИППАРХ . Для измерения мало меняющихся размеров Солнца и Луны астрономы пользовались прямой планкой со скользящим визиром в виде темного диска или пластины с круглым отверстием. Наблюдатель направлял планку на цель и двигал визир вдоль нее, добиваясь точного совпадения отверстия с размером светила. Птолемей и его коллеги усовершенствовали многие из астрономических приборов. Проводя с ними тщательные наблюдения и при помощи тригонометрии переводя инструментальные показания в позиционные углы, они довели точность измерений примерно до 10"
(см. также ПТОЛЕМЕЙ Клавдий).
Средние века. В связи с политическими и социальными потрясениями поздней античности и раннего средневековья развитие астрономии в Средиземноморье приостановилось. Каталоги и таблицы Птолемея сохранились, но все меньше людей умели ими пользоваться, и все реже проводились наблюдения и регистрация астрономических событий. Однако на Среднем Востоке и в Центральной Азии астрономия расцветала и строились обсерватории. В 8 в. Абдалла аль-Мамун основал в Багдаде Дом мудрости, подобный Александрийской библиотеке, и организовал связанные с ним обсерватории в Багдаде и Сирии. Там несколько поколений астрономов изучали и развивали работы Птолемея. Подобные учреждения процветали в 10 и 11 вв. в Каире. Кульминацией той эпохи стала гигантская обсерватория в Самарканде (ныне Узбекистан). Там Улукбек (1394-1449), внук азиатского завоевателя Тамерлана (Тимура), построив огромный секстант радиусом 40 м в виде ориентированной на юг траншеи шириной 51 см с отделанными мрамором стенками, проводил наблюдения Солнца с небывалой точностью. Несколько инструментов меньшего размера он использовал для наблюдений звезд, Луны и планет.
Возрождение. Когда в исламской культуре 15 в. астрономия достигла расцвета, Западная Европа вновь открыла для себя это великое творение античного мира.
Коперник. Николай Коперник (1473-1543), вдохновленный простотой принципов Платона и других греческих философов, с недоверием и тревогой взирал на геоцентрическую систему Птолемея, которая требовала громоздких математических расчетов для объяснения видимых движений светил. Коперник предложил, сохранив подход Птолемея, поместить Солнце в центр системы, а Землю считать планетой. Это значительно упростило дело, но вызвало глубокий переворот в сознании людей (см. также КОПЕРНИК Николай).
Тихо Браге. Датский астроном Т. Браге (1546-1601) был обескуражен тем, что теория Коперника точнее предсказывала положение светил, чем теория Птолемея, но все же не вполне верно. Он счел, что проблему решат более точные наблюдательные данные, и убедил короля Фридриха II отдать ему для строительства обсерватории о. Вен близ Копенгагена. В этой обсерватории, названной Ураниборг (Небесный замок) было множество стационарных инструментов, мастерские, библиотека, химическая лаборатория, спальни, столовая и кухня. Тихо имел даже свои бумажную мельницу и печатный станок. В 1584 он построил новое здание для наблюдений - Стьернеборг (Звездный замок), где собрал самые крупные и совершенные инструменты. Правда, это были приборы того же типа, что и во времена Птолемея, но Тихо значительно повысил их точность, заменив дерево металлами. Он ввел особо точные визиры и шкалы, придумал математические методы для калибровки наблюдений. Тихо и его помощники, наблюдая за небесными телами невооруженным глазом, достигли со своими приборами точности измерений в 1". Они систематически перемеряли положения звезд и наблюдали за движением Солнца, Луны и планет, собирая наблюдательные данные с небывалым упорством и аккуратностью
(см. также БРАГЕ Тихо).

Кеплер. Изучая данные Тихо, И. Кеплер (1571-1630) обнаружил, что наблюдаемое обращение планет вокруг Солнца не удается представить как движение по окружностям. Кеплер с большим почтением относился к результатам, полученным в Ураниборге, и поэтому отбросил мысль о том, что небольшие расхождения вычисленных и наблюдаемых положений планет могли быть вызваны ошибками в наблюдениях Тихо. Продолжая поиски, Кеплер установил, что планеты движутся по эллипсам, заложив этим фундамент для новой астрономии и физики
(см. также КЕПЛЕР Иоганн ; КЕПЛЕРА ЗАКОНЫ). Работы Тихо и Кеплера предвосхитили многие особенности современной астрономии, такие, как организация специализированных обсерваторий при государственной поддержке; доведение до совершенства приборов, хотя бы и традиционных; деление ученых на наблюдателей и теоретиков. Новые принципы работы утверждались вместе с новой техникой: на помощь глазу в астрономии шел телескоп.
Появление телескопов. Первые телескопы-рефракторы. В 1609 Галилей начал использовать свой первый самодельный телескоп. Наблюдения Галилея открыли эру визуальных исследований небесных светил. Вскоре телескопы распространились по Европе. Любознательные люди делали их сами или заказывали мастерам и устраивали небольшие личные обсерватории, обычно в собственных домах
(см. также ГАЛИЛЕЙ Галилео). Телескоп Галилея назвали рефрактором, поскольку лучи света в нем преломляются (лат. refractus - преломленный), проходя сквозь несколько стеклянных линз. В простейшей конструкции передняя линза-объектив собирает лучи в фокусе, создавая там изображение объекта, а расположенную у глаза линзу-окуляр используют как лупу для рассматривания этого изображения. В телескопе Галилея окуляром служила отрицательная линза, дающая прямое изображение довольно низкого качества с малым полем зрения. Кеплер и Декарт развили теорию оптики, и Кеплер предложил схему телескопа с перевернутым изображением, но значительно большими полем зрения и увеличением, чем у Галилея. Эта конструкция быстро вытеснила прежнюю и стала стандартом для астрономических телескопов. Например, в 1647 польский астроном Ян Гевелий (1611-1687) использовал для наблюдения Луны кеплеровы телескопы длиной 2,5-3,5 метра. Вначале он устанавливал их в небольшой башенке на крыше своего дома в Гданьске (Польша), а позже - на площадке с двумя наблюдательными пунктами, один из которых был вращающимся (см. также ГЕВЕЛИЙ Ян). В Голландии Христиан Гюйгенс (1629-1695) и его брат Константин строили очень длинные телескопы, имевшие объективы диаметром лишь несколько дюймов, но обладавшие огромным фокусным расстоянием. Это улучшало качество изображения, хотя и затрудняло работу с инструментом. В 1680-х годах Гюйгенс экспериментировал с 37-метровым и 64-метровым "воздушными телескопами", объективы которых располагали на вершине мачты и поворачивали с помощью длинной палки или веревок, а окуляр просто держали в руках (см. также ГЮЙГЕНС Христиан). Используя линзы, изготовленные Д. Кампани, Ж.Д.Кассини (1625-1712) в Болонье и позже в Париже проводил наблюдения с воздушными телескопами длиной 30 и 41 м, продемонстрировав их несомненные достоинства, несмотря на сложность работы с ними. Наблюдениям очень мешала вибрация мачты с объективом, трудности его наведения с помощью веревок и тросов, а также неоднородность и турбулентность воздуха между объективом и окуляром, особенно сильная в отсутствие трубы. Ньютон, телескоп-рефлектор и теория тяготения. В конце 1660-х годов И. Ньютон (1643-1727) пытался разгадать природу света в связи с проблемами рефракторов. Он ошибочно решил, что хроматическая аберрация, т.е. неспособность линзы собрать лучи всех цветов в один фокус, принципиально неустранима. Поэтому Ньютон построил первый работоспособный телескоп-рефлектор, у которого роль объектива вместо линзы играло вогнутое зеркало, собирающее свет в фокусе, где изображение можно рассматривать через окуляр. Однако важнейшим вкладом Ньютона в астрономию стали его теоретические работы, показавшие, что кеплеровы законы движения планет являются частным случаем всеобщего закона тяготения. Ньютон сформулировал этот закон и развил математические приемы для точного вычисления движения планет. Это стимулировало рождение новых обсерваторий, где с высочайшей точностью измеряли положения Луны, планет и их спутников, уточняя с помощью теории Ньютона элементы их орбит и прогнозируя движение.
См. также
НЕБЕСНАЯ МЕХАНИКА ;
ТЯГОТЕНИЕ ;
НЬЮТОН Исаак .
Часы, микрометр и телескопический визир. Не менее важным, чем улучшение оптической части телескопа, было усовершенствование его монтировки и оснащения. Для астрономических измерений стали необходимы маятниковые часы, способные идти по местному времени, которое определяется из одних наблюдений и используется в других
(см. также ЧАСЫ). С помощью нитяного микрометра удалось при наблюдении в окуляр телескопа измерять очень малые углы. Для увеличения точности астрометрии важную роль сыграло совмещение телескопа с армиллярной сферой, секстантом и прочими угломерными инструментами. Как только визиры для невооруженного глаза были вытеснены маленькими телескопами, возникла потребность в значительно более точном изготовлении и делении угловых шкал. В значительной мере в связи с потребностями европейских обсерваторий развилось производство небольших высокоточных станков
(см. также ИЗМЕРИТЕЛЬНЫЕ ИНСТРУМЕНТЫ).
Государственные обсерватории. Улучшение астрономических таблиц. Со второй половины 17 в. для целей мореплавания и картографии правительства разных стран начали учреждать государственные обсерватории. В Королевской академии наук, основанной Людовиком XIV в Париже в 1666, академики взялись за пересмотр астрономических констант и таблиц "с нуля", приняв за основу работы Кеплера. В 1669 по инициативе министра Ж.-Б.Кольбера была основана Королевская обсерватория в Париже. Ей руководило четыре замечательных поколения Кассини, начиная с Жана Доминика. В 1675 была основана Королевская Гринвичская обсерватория, возглавил которую первый Королевский астроном Д.Флемстид (1646-1719). Вместе с Королевским обществом, начавшим свою деятельность в 1647, она стала в Англии центром астрономических и геодезических исследований. В те же годы были основаны обсерватории в Копенгагене (Дания), Лунде (Швеция) и Гданьске (Польша) (см. также ФЛЕМСТИД Джон). Важнейшим результатом деятельности первых обсерваторий стали эфемериды - таблицы предвычисленных положений Солнца, Луны и планет, необходимые для картографии, навигации и фундаментальных астрономических исследований.
Введение стандартного времени. Государственные обсерватории стали хранителями эталонного времени, которое сначала распространяли с помощью оптических сигналов (флаги, сигнальные шары), а позже - по телеграфу и радио. Нынешняя традиция падающих в полночь Сочельника шаров восходит к тем временам, когда сигнальные шары падали по высокой мачте на крыше обсерватории в точно назначенное время, давая возможность капитанам стоящих в гавани судов проверять перед отплытием свои хронометры.
Определение долгот. Исключительно важной задачей государственных обсерваторий той эпохи было определение координат морских судов. Географическую широту легко найти по углу Полярной звезды над горизонтом. Но долготу определить гораздо сложнее. Одни методы основывались на моментах затмений спутников Юпитера; другие - на положении Луны относительно звезд. Но самые надежные методы требовали высокоточных хронометров, способных в течение плавания сохранять время обсерватории вблизи порта выхода.
Развитие Гринвичской и Парижской обсерваторий. В 19 в. важнейшими астрономическими центрами оставались государственные и некоторые частные обсерватории Европы. В списке обсерваторий 1886 года мы обнаруживаем 150 в Европе, 42 в Северной Америке и 29 в других местах. Гринвичская обсерватория к концу века имела 76-см рефлектор, 71-, 66- и 33-см рефракторы и множество вспомогательных инструментов. Она активно занималась астрометрией, службой времени, физикой Солнца и астрофизикой, а также геодезией, метеорологией, магнитными и другими наблюдениями. Парижская обсерватория тоже располагала точными современными инструментами и проводила программы, подобные гринвичским.
Новые обсерватории. Пулковская астрономическая обсерватория Императорской академии наук в С.-Петербурге, построенная в 1839, быстро добилась уважения и почета. Ее растущий коллектив занимался астрометрией, определением фундаментальных постоянных, спектроскопией, службой времени и множеством геофизических программ. Потсдамская обсерватория в Германии, открытая в 1874, вскоре стала авторитетной организацией, известной работами по физике Солнца, астрофизике и фотографическим обзорам неба.
Создание больших телескопов. Рефлектор или рефрактор? Хотя телескоп-рефлектор Ньютона был важным изобретением, в течение нескольких десятилетий он воспринимался астрономами лишь как инструмент, дополняющий рефракторы. Вначале рефлекторы делали сами наблюдатели для собственных небольших обсерваторий. Но к концу 18 в. за это взялась молодая оптическая промышленность, оценив потребность растущего числа астрономов и геодезистов. Наблюдатели получили возможность выбора из множества типов рефлекторов и рефракторов, каждый из которых имел достоинства и недостатки. Телескопы-рефракторы с линзами из высококачественного стекла давали изображение лучшее, чем у рефлекторов, да и труба у них была компактнее и жестче. Но рефлекторы могли быть изготовлены значительно большего диаметра, а изображения в них не были искажены цветными каемками, как у рефракторов. В рефлектор лучше видны слабые объекты, поскольку отсутствуют потери света в стеклах. Однако сплав спекулум, из которого делали зеркала, быстро тускнел и требовал частой переполировки (покрывать поверхность тонким зеркальным слоем тогда еще не умели).
Гершель. В 1770-х годах дотошный и упорный астроном-самоучка В. Гершель построил несколько ньютоновых телескопов, доведя диаметр до 46 см и фокусное расстояние до 6 м. Высокое качество его зеркал позволило применить очень сильное увеличение. С помощью одного из своих телескопов Гершель открыл планету Уран, а также тысячи двойных звезд и туманностей. В те годы было построено много телескопов, но обычно их создавали и использовали энтузиасты-одиночки, без организации обсерватории в современном смысле
(см. также ГЕРШЕЛЬ, ВИЛЬЯМ). Гершель и другие астрономы пытались построить более крупные рефлекторы. Но массивные зеркала гнулись и теряли свою форму, когда телескоп менял положение. Предела для металлических зеркал достиг в Ирландии У.Парсонс (лорд Росс), создавший рефлектор диаметром 1,8 м для своей домашней обсерватории.
Строительство крупных телескопов. Промышленные магнаты и нувориши США скопили в конце 19 в. гигантские богатства, и некоторые из них занялись филантропией. Так, наживший состояние на золотой лихорадке Дж.Лик (1796-1876) завещал основать обсерваторию на горе Гамильтон, в 65 км от Санта-Крус (Калифорния). Ее главным инструментом стал 91-см рефрактор, тогда крупнейший в мире, изготовленный известной фирмой "Алван Кларк и сыновья" и установленный в 1888. А в 1896 там же, на Ликской обсерватории, начал работать 36-дюймовый рефлектор Кроссли, тогда крупнейший в США. Астроном Дж. Хейл (1868-1938) убедил чикагского трамвайного магната Ч.Йеркса финансировать строительство еще более крупной обсерватории для Чикагского университета. Ее основали в 1895 в Уильямс-Бэй (шт. Висконсин), оснастив 40-дюймовый рефрактором, до сих пор и, вероятно, навсегда крупнейшим в мире (см. также ХЕЙЛ Джордж Эллери). Организовав Йеркскую обсерваторию, Хейл развил бурную деятельность по привлечению средств из различных источников, включая стального магната А.Карнеги, для строительства обсерватории в наилучшем для наблюдений месте Калифорнии. Оснащенная несколькими солнечными телескопами конструкции Хейла и 152-см рефлектором, обсерватория Маунт-Вилсон в горах Сан-Габриель к северу от Пасадины (шт. Калифорния) вскоре стала астрономической меккой. Приобретя необходимый опыт, Хейл организовал создание рефлектора невиданного размера. Названный в честь основного спонсора, 100-дюймовый телескоп им. Хукера вступил в строй в 1917; но прежде пришлось преодолеть множество инженерных проблем, поначалу казавшихся неразрешимыми. Первой из них была отливка стеклянного диска нужного размера и его медленное охлаждение для получения высокого качества стекла. Шлифовка и полировка зеркала для придания ему необходимой формы заняла более шести лет и потребовала создания уникальных станков. Заключительный этап полировки и проверки зеркала проводили в специальном помещении с идеальной чистотой и контролем температуры. Механизмы телескопа, здание и купол его башни, сооруженной на вершине горы Вилсона (Маунт-Вилсон) высотой 1700 м, считались инженерным чудом того времени. Вдохновленный прекрасной работой 100-дюймового прибора, Хейл посвятил остаток жизни созданию гигантского 200-дюймового телескопа. Спустя 10 лет после его смерти и из-за задержки, вызванной Второй мировой войной, телескоп им. Хейла вступил в строй в 1948 на вершине 1700-метровой горы Паломар (Маунт-Паломар), в 64 км к северо-востоку от Сан-Диего (шт. Калифорния). Это было научно-техническое чудо тех дней. Почти 30 лет этот телескоп оставался крупнейшим в мире, и многие астрономы и инженеры считали, что он никогда не будет превзойден.



Но появление компьютеров способствовало дальнейшему расширению строительства телескопов. В 1976 на 2100-метровой горе Семиродники у станицы Зеленчукская (Сев. Кавказ, Россия) начал работать 6-метровый телескоп БТА (Большой телескоп азимутальный), демонстрируя практический предел технологии "толстого и прочного" зеркала.



Путь строительства крупных зеркал, способных собирать больше света, а значит, видеть дальше и лучше, лежит через новые технологии: в последние годы развиваются методы изготовления тонких и сборных зеркал. Тонкие зеркала диаметром 8,2 м (при толщине ок. 20 см) уже работают на телескопах Южной обсерватории в Чили. Их форму контролирует сложная система механических "пальцев", управляемых компьютером. Успех этой технологии привел к разработке нескольких подобных проектов в разных странах. Для проверки идеи составного зеркала в Смитсоновской астрофизической обсерватории в 1979 построили телескоп с объективом из шести 183-см зеркал, по площади эквивалентных одному 4,5-метровому зеркалу. Этот многозеркальный телескоп, установленный на горе Хопкинс в 50 км к югу от Тусона (шт. Аризона), оказался весьма эффективен, и данный подход использовали при строительстве двух 10-метровых телескопов им. У. Кека на обсерватории Мауна-Кеа (о. Гавайи). Каждое гигантское зеркало составлено из 36 шестиугольных сегментов по 183 см в поперечнике, управляемых компьютером для получения единого изображения. Хотя качество изображений пока невысокое, но удается получать спектры очень далеких и слабых объектов, недоступных другим телескопам. Поэтому в начале 2000-х годов планируется ввести в строй еще несколько многозеркальных телескопов с эффективными апертурами 9-25 м.


НА ВЕРШИНЕ МАУНА-КЕА, древнего вулкана на Гавайях, расположились десятки телескопов. Астрономов привлекают сюда большая высота и очень сухой чистый воздух. Внизу справа сквозь открытую щель башни хорошо видно зеркало телескопа "Кек I", а внизу слева - строящуюся башню телескопа "Кек II".


РАЗРАБОТКА АППАРАТУРЫ
Фотография. В середине 19 в. несколько энтузиастов начали использовать фотографию для регистрации изображений, наблюдаемых в телескоп. С повышением чувствительности эмульсий стеклянные фотопластинки стали главным средством регистрации астрофизических данных. Помимо традиционных рукописных журналов наблюдений в обсерваториях появились драгоценные "стеклянные библиотеки". Фотопластинка способна накапливать слабый свет далеких объектов и фиксировать недоступные глазу детали. С применением фотографии в астрономии потребовались телескопы нового типа, например, камеры широкого обзора, способные регистрировать сразу большие области неба для создания фотоатласов вместо рисованных карт. В сочетании в рефлекторами большого диаметра фотография и спектрограф позволили заняться изучением слабых объектов. В 1920-х годов с помощью 100-дюймового телескопа обсерватории Маунт-Вилсон Э.Хаббл (1889-1953) классифицировал слабые туманности и доказал, что многие из них являются гигантскими галактиками, подобными Млечному Пути. Кроме того, Хаббл открыл, что галактики стремительно разлетаются друг от друга. Это полностью изменило представления астрономов о строении и эволюции Вселенной, но лишь несколько обсерваторий, имевших мощные телескопы для наблюдения слабых далеких галактик, были в состоянии заниматься такими исследованиями.
См. также
КОСМОЛОГИЯ ;
ГАЛАКТИКИ ;
ХАББЛ Эдвин Пауэлл ;
ТУМАННОСТИ .
Спектроскопия. Возникшая почти одновременно с фотографией, спектроскопия позволила астрономам из анализа света звезд определять их химический состав, а по доплеровскому смещению линий в спектрах изучать движение звезд и галактик. Развитие физики в начале 20 в. помогло расшифровать спектрограммы. Впервые появилась возможность изучить состав недоступных небесных тел. Эта задача оказалась по силам скромным университетским обсерваториям, поскольку для получения спектров ярких объектов не нужен крупный телескоп. Так, обсерватория Гарвардского колледжа одной из первых занялась спектроскопией и собрала огромную коллекцию спектров звезд. Ее сотрудники классифицировали тысячи звездных спектров и создали базу для изучения звездной эволюции. Объединив эти данные с квантовой физикой, теоретики поняли природу источника звездной энергии. В 20 в. были созданы детекторы инфракрасного излучения, приходящего от холодных звезд, из атмосфер и с поверхности планет. Визуальные наблюдения как недостаточно чувствительный и объективный измеритель блеска звезд были вытеснены вначале фотопластинкой, а затем электронными приборами (см. также СПЕКТРОСКОПИЯ).
АСТРОНОМИЯ ПОСЛЕ ВТОРОЙ МИРОВОЙ ВОЙНЫ
Усиление государственной поддержки. После войны ученым стали доступны новые технологии, родившиеся в армейских лабораториях: радио- и радиолокационная техника, чувствительные электронные приемники света, вычислительные машины. Правительства промышленно развитых стран осознали важность научных исследований для национальной безопасности и стали выделять немалые средства на научную работу и образование.
Национальные обсерватории США. В начале 1950-х годов Национальный научный фонд США обратился к астрономам дать предложения относительно общенациональной обсерватории, которая располагалась бы в наилучшем месте и была бы доступна всем квалифицированным ученым. К 1960-м годам возникло две группы организаций: Ассоциация университетов для исследований по астрономии (AURA), создавшая концепцию Национальных оптикоастрономических обсерваторий (NOAO) на 2100-метровой вершине Китт-Пик близ Тусона (шт. Аризона), и Объединение университетов, разработавшее проект Национальной радиоастрономической обсерватории (NRAO) в долине Дир-Крик, недалеко от Грин-Бэнк (шт. Зап. Виргиния).


НАЦИОНАЛЬНАЯ ОБСЕРВАТОРИЯ США КИТТ-ПИК близ Тусона (шт. Аризона). Среди ее крупнейших инструментов солнечный телескоп "Мак-Мас" (внизу), 4-м телескоп "Мейол" (вверху справа) и 3,5-м телескоп WIYN объединенной обсерватории Висконсинского, Индианского и Йельского университетов и NOAO (крайний слева).


К 1990 NOAO имела на Китт-Пик 15 телескопов диаметром до 4 м. AURA также создала Межамериканскую обсерваторию в Сьерра-Тололо (Чилийские Анды) на высоте 2200 м, где с 1967 изучают южное небо. Кроме Грин-Бэнк, где установлен крупнейший радиотелескоп (диаметр 43 м) на экваториальной монтировке, NRAO имеет также 12-метровый телескоп миллиметрового диапазона на Китт-Пик и систему VLA (Very Large Array) из 27 радиотелескопов диаметрам по 25 м на пустынной равнине Сан-Огастин близ Сокорро (шт. Нью-Мексико). Крупной американской обсерваторией стал Национальный радио- и ионосферный центр на о.Пуэрто-Рико. Его радиотелескоп с крупнейшим в мире сферическим зеркалом диаметром 305 м неподвижно лежит в естественном углублении среди гор и используется для радио- и радиолокационной астрономии.



Постоянные сотрудники национальных обсерваторий следят за исправностью оборудования, разрабатывают новые приборы и проводят собственные исследовательские программы. Однако любой ученый может подать заявку на наблюдения и, если она одобрена комитетом координации научных исследований, получить время для работы на телескопе. Это позволяет ученым из небогатых учреждений использовать самое совершенное оборудование.
Наблюдения южного неба. Значительная часть южного неба не видна из большинства обсерваторий Европы и США, хотя именно южное небо считают особо ценным для астрономии, поскольку оно содержит центр Млечного Пути и много важных галактик, включая Магеллановы Облака - две небольшие соседние с нами галактики. Первые карты южного неба составили английский астроном Э.Галлей, работавший с 1676 по 1678 на острове Св. Елены, и французский астроном Н.Лакайль, работавший с 1751 по 1753 на юге Африки. В 1820 Британское бюро долгот основало на мысе Доброй Надежды Королевскую обсерваторию, вначале оснастив ее лишь телескопом для астрометрических измерений, а затем - полным набором инструментов для разнообразных программ. В 1869 в Мельбурне (Австралия) был установлен 122-см рефлектор; позже его перевезли в Маунт-Стромло, где после 1905 стала расти астрофизическая обсерватория. В конце 20 в., когда условия для наблюдений на старых обсерваториях Северного полушария стали ухудшаться из-за сильной урбанизации, европейские страны начали активно строить обсерватории с крупными телескопами в Чили, Австралии, Центральной Азии, на Канарских и Гавайских островах.
Обсерватории над Землей. Астрономы приступили к использованию высотных аэростатов в качестве наблюдательных платформ еще в 1930-е годы и продолжают такие исследования до сих пор. В 1950-х годах приборы устанавливались на высотных самолетах, ставших летающими обсерваториями. Внеатмосферные наблюдения начались в 1946, когда ученые США на трофейных немецких ракетах "Фау-2" подняли в стратосферу детекторы для наблюдения ультрафиолетового излучения Солнца. Первый искусственный спутник был запущен в СССР 4 октября 1957, а уже в 1958 советская станция "Луна-3" сфотографировала обратную сторону Луны. Затем стали осуществляться полеты к планетам и появились специализированные астрономические спутники для наблюдения Солнца и звезд. В последние годы на околоземных и других орбитах постоянно работает несколько астрономических спутников, изучающих небо во всех диапазонах спектра.
Работа на обсерватории. В прежние времена жизнь и деятельность астронома всецело зависели от возможностей его обсерватории, поскольку связь и переезды были медленными и сложными. В начале 20 в. Хейл создавал обсерваторию Маунт-Вилсон как центр солнечной и звездной астрофизики, способный вести не только телескопические и спектральные наблюдения, но и необходимые лабораторные исследования. Он стремился, чтобы на горе Вилсон было все, что необходимо для жизни и работы, точно так, как Тихо делал это на острове Вен. До сих пор некоторые крупные обсерватории на горных вершинах представляют собой замкнутые сообщества ученых и инженеров, живущих в общежитии и работающих по ночам по своим программам. Но постепенно этот стиль меняется. В поисках наиболее благоприятных мест для наблюдения обсерватории располагают в удаленных районах, где трудно жить постоянно. Приезжающие ученые остаются на обсерватории от нескольких дней до нескольких месяцев, чтобы провести конкретные наблюдения. Возможности современно электроники позволяют вести дистанционные наблюдения, вообще не посещая обсерваторию, или строить в труднодоступных местах полностью автоматические телескопы, самостоятельно работающие по намеченной программе. Определенную специфику имеют наблюдения с помощью космических телескопов. Вначале многие астрономы, привыкшие самостоятельно работать с инструментом, чувствовали себя неуютно в рамках космической астрономии, отделенные от телескопа не только пространством, но и множеством инженеров и сложных инструкций. Однако в 1980-х годах на многих наземных обсерваториях управление телескопом перенесли с простых пультов, расположенных непосредственно у телескопа, в специальное помещение, начиненное компьютерами и порой находящееся в отдельном здании. Вместо того чтобы наводить на объект главный телескоп, глядя в укрепленный на нем небольшой телескоп-искатель и нажимая кнопки на небольшом ручном пульте, астроном теперь сидит перед экраном телегида и манипулирует джойстиком. Часто астроном просто отправляет через Интернет в обсерваторию подробную программу наблюдений и, когда они проведены, получает результаты прямо в свой компьютер. Поэтому стиль работы с наземными и космическими телескопами становится все более схожим.
СОВРЕМЕННЫЕ НАЗЕМНЫЕ ОБСЕРВАТОРИИ
Оптические обсерватории. Место для строительства оптической обсерватории обычно выбирают вдали от городов с их ярким ночным освещением и смогом. Обычно это вершина горы, где тоньше слой атмосферы, сквозь который приходится вести наблюдения. Желательно, чтобы воздух был сухим и чистым, а ветер не особенно сильным. В идеале обсерватории должны быть равномерно распределены по поверхности Земли, чтобы в любой момент можно было наблюдать объекты северного и южного неба. Однако исторически сложилось так, что большинство обсерваторий расположено в Европе и Северной Америке, поэтому небо Северного полушария изучено лучше. В последние десятилетия начали сооружать крупные обсерватории в Южном полушарии и вблизи экватора, откуда можно наблюдать как северное, так и южное небо. Древний вулкан Мауна-Кеа на о. Гавайи высотой более 4 км считается лучшим местом в мире для астрономических наблюдений. В 1990-х годах там обосновались десятки телескопов разных стран.
Башня. Телескопы - очень чувствительные приборы. Для защиты от непогоды и перепадов температуры их помещают в специальные здания - астрономические башни. Небольшие башни имеют прямоугольную форму с плоской раздвигающейся крышей. Башни крупных телескопов обычно делают круглыми с полусферическим вращающимся куполом, в котором для наблюдений открывается узкая щель. Такой купол хорошо защищает телескоп от ветра во время работы. Это важно, поскольку ветер раскачивает телескоп и вызывает дрожание изображения. Вибрация почвы и здания башни также отрицательно влияет на качество изображений. Поэтому телескоп монтируют на отдельном фундаменте, не связанном с фундаментом башни. Внутри башни или вблизи нее монтируют систему вентиляции подкупольного пространства и установку для вакуумного напыления на зеркало телескопа отражающего алюминиевого слоя, тускнеющего со временем.
Монтировка. Для наведения на светило телескоп должен вращаться вокруг одной или двух осей. К первому типу относятся меридианный круг и пассажный инструмент - небольшие телескопы, поворачивающиеся вокруг горизонтальной оси в плоскости небесного меридиана. Двигаясь с востока на запад, каждое светило дважды в сутки пересекает эту плоскость. С помощью пассажного инструмента определяют моменты прохождения звезд через меридиан и таким образом уточняют скорость вращения Земли; это необходимо для службы точного времени. Меридианный круг позволяет измерять не только моменты, но и место пересечения звездой меридиана; это нужно для создания точных карт звездного неба. В современных телескопах непосредственное визуальное наблюдение практически не применяется. В основном их используют для фотографирования небесных объектов или для регистрации их света электронными детекторами; при этом экспозиция иногда достигает нескольких часов. Все это время телескоп должен быть точно нацелен на объект. Поэтому с помощью часового механизма он с постоянной скоростью поворачивается вокруг часовой оси (параллельной оси вращения Земли) с востока на запад вслед за светилом, компенсируя этим вращение Земли с запада на восток. Вторая ось, перпендикулярная часовой, называется осью склонений; она служит для наведения телескопа в направлении север-юг. Такую конструкцию называют экваториальной монтировкой и используют почти для всех телескопов, за исключением самых крупных, для которых более компактной и дешевой оказалась альт-азимутальная монтировка. На ней телескоп следит за светилом, поворачиваясь одновременно с переменной скоростью вокруг двух осей - вертикальной и горизонтальной. Это значительно усложняет работу часового механизма, требуя компьютерного контроля.



Телескоп-рефрактор имеет линзовый объектив. Поскольку лучи разного цвета преломляются в стекле по разному, линзовый объектив рассчитывают так, чтобы он давал в фокусе четкое изображение в лучах какого-то одного цвета. Старые рефракторы создавались для визуальных наблюдений и поэтому давали четкое изображение в желтых лучах. С появлением фотографии стали строить фотографические телескопы - астрографы, дающие четкое изображение в голубых лучах, к которым чувствительна фотоэмульсия. Позже появились эмульсии, чувствительные к желтому, красному и даже инфракрасному свету. Их можно использовать для фотографирования на визуальных рефракторах. Размер изображения зависит от фокусного расстояния объектива. У 102-см Йеркского рефрактора фокусное расстояние составляет 19 м, поэтому диаметр лунного диска в его фокусе около 17 см. Размер фотопластинок у этого телескопа 20ґ25 см; полная Луна легко умещается на них. Астрономы используют стеклянные фотопластинки из-за их высокой жесткости: даже через 100 лет хранения они не деформируются и позволяют измерять относительное положение звездных изображений с точностью до 3 мкм, что для крупных рефракторов, подобных йеркскому, соответствует на небе дуге в 0,03 ".
Телескоп-рефлектор в качестве объектива имеет вогнутое зеркало. Его преимущество перед рефрактором состоит в том, что лучи любого цвета отражаются от зеркала одинаково, обеспечивая четкость изображения. К тому же зеркальный объектив можно сделать намного крупнее линзового, поскольку стеклянная заготовка для зеркала может не быть прозрачной внутри; от деформации под собственным весом ее можно уберечь, поместив в специальную оправу, поддерживающую зеркало снизу. Чем больше диаметр объектива, тем больше света собирает телескоп и более слабые и далекие объекты способен "увидеть". Долгие годы крупнейшими в мире были 6-м рефлектор БТА (Россия) и 5-м рефлектор Паломарской обсерватории (США). Но сейчас в обсерватории Мауна-Кеа на о.Гавайи работают два телескопа с 10-метровыми составными зеркалами и строится несколько телескопов с монолитными зеркалами диаметром 8-9 м. Таблица 1.
КРУПНЕЙШИЕ ТЕЛЕСКОПЫ МИРА
___
__Диаметр ______Обсерватория ______Место и год объекти-ва (м) ________________сооружения/демонтажа

РЕФЛЕКТОРЫ

10,0 Мауна-Кеа Гавайи (США) 1996 10,0 Мауна-Кеа Гавайи (США) 1993 9,2 Мак-Дональд Техас (США) 1997 8,3 Национальная Японии Гавайи (США) 1999 8,2 Европейская южная гора Сьерра-Паранал (Чили) 1998 8,2 Европейская южная гора Сьерра-Паранал (Чили) 1999 8,2 Европейская южная гора Сьерра-Паранал (Чили) 2000 8,1 Джемини-Север Гавайи (США) 1999 6,5 Аризонского университета гора Хопкинс (шт. Аризона) 1999 6,0 Специальная астрофизи- ческая АН России стан. Зеленчукская (Россия) 1976 5,0 Паломарская гора Паломар (Калифорния) 1949 1,8*6=4,5 Аризонского университета гора Хопкинс (шт. Аризона) 1979/1998 4,2 Рока де лос Мучачос Канарские о-ва (Испания) 1986 4,0 Межамериканская Сьерра-Тололо (Чили) 1975 3,9 Англо-австралийская Сайдинг-Спринг (Австралия) 1975 3,8 Китт-Пик Национальная Тусон (шт. Аризона) 1974 3,8 Мауна-Кеа (ИК) Гавайи (США) 1979 3,6 Европейская южная Ла-Силья (Чили) 1976 3,6 Мауна-Кеа Гавайи (США) 1979 3,5 Рока де лос Мучачос Канарские о-ва (Испания) 1989 3,5 Межуниверситетская Сакраменто-Пик (шт. Нью Мексико) 1991 3,5 Германо-испанская Калар-Альто (Испания) 1983


РЕФРАКТОРЫ

1,02 Йеркская Уильямс-Бэй (шт. Висконсин) 1897 0,91 Ликская гора Гамильтон (шт. Калифорния) 1888 0,83 Парижская Медон (Франция) 1893 0,81 Потсдамская Потсдам (Германия) 1899 0,76 Французская южная Ницца (Франция) 1880 0,76 Аллегейнская Питтсбург (шт. Пенсильвания) 1917 0,76 Пулковская Санкт-Петербург 1885/1941


КАМЕРЫ ШМИДТА*

1,3-2,0 К.Шварцшильда Таутенбург (Германия) 1960 1,2-1,8 Паломарская гора Паломар (шт. Калифорния) 1948 1,2-1,8 Англо-австралийская Сайдинг-Спринг (Австралия) 1973 1,1-1,5 Астрономическая Токио (Япония) 1975 1,0-1,6 Европейская южная Чили 1972


СОЛНЕЧНЫЕ

1,60 Китт-Пик Национальная Тусон (шт. Аризона) 1962 1,50 Сакраменто-Пик (В)* Санспот (шт. Нью-Мексико) 1969 1,00 Астрофизическая Крым (Украина) 1975 0,90 Китт-Пик (2 доп.)* Тусон (шт. Аризона) 1962 0,70 Китт-Пик (В)* Тусон (шт. Аризона) 1975 0,70 Институт физики Солнца ФРГ о. Тенерифе (Испания) 1988 0,66 Митака Токио (Япония) 1920 0,64 Кембриджская Кембридж (Англия) 1820


Примечание: Для камер Шмидта указаны диаметр коррекционной пластинки и зеркала; для солнечных телескопов: (В) - вакуумный; 2 доп. - два дополнительных телескопа в общем корпусе с 1,6-м телескопом.
Зеркально-линзовые камеры. Недостаток рефлекторов в том, что они дают четкое изображение лишь вблизи центра поля зрения. Это не мешает, если изучают один объект. Но патрульные работы, например, поиск новых астероидов или комет, требуют фотографирования сразу больших площадок неба. Обычный рефлектор для этого не годится. Немецкий оптик Б.Шмидт в 1932 создал комбинированный телескоп, у которого недостатки главного зеркала исправляются с помощью расположенной перед ним тонкой линзы сложной формы - коррекционной пластины. Камера Шмидта Паломарской обсерватории получает на фотопластинке 35ґ35 см изображение области неба 6ґ6°. Другая конструкция широкоугольной камеры была создана Д.Д.Максутовым в 1941 в России. Она проще камеры Шмидта, поскольку роль коррекционной пластины в ней играет простая толстая линза - мениск.
Работа оптических обсерваторий. Сейчас более чем в 30 странах мира функционирует более 100 крупных обсерваторий. Обычно каждая из них самостоятельно или в кооперации с другими проводит несколько многолетних программ наблюдений. Астрометрические измерения. Крупные национальные обсерватории - Морская обсерватория США, Королевская Гринвичская в Великобритании (закрыта в 1998), Пулковская в России и др. - регулярно измеряют положения звезд и планет на небе. Это очень тонкая работа; именно в ней достигается высочайшая "астрономическая" точность измерений, на основе которых создают каталоги положения и движения светил, необходимые для наземной и космической навигации, для определения пространственного положения звезд, для уточнения законов движения планет. Например, измеряя координаты звезд с интервалом в полгода, можно заметить, что некоторые из них испытывают колебания, связанные с перемещением Земли по орбите (эффект параллакса). По величине этого смещения определяют расстояние до звезд: чем меньше смещение, тем больше расстояние. С Земли астрономы могут измерять смещение в 0,01 " (толщина спички, удаленной на 40 км!), что соответствует расстоянию в 100 парсеков.
Метеорный патруль. С помощью нескольких широкоугольных камер, разнесенных на большое расстояние, непрерывно фотографируют ночное небо для определения траекторий метеоров и возможного места падения метеоритов. Впервые эти наблюдения с двух станций начали в Гарвардской обсерватории (США) в 1936 и под руководством Ф.Уиппла регулярно проводили до 1951. В 1951-1977 такая же работа выполнялась в Ондржейовской обсерватории (Чехия). С 1938 в СССР фотографические наблюдения метеоров проводились в Душанбе и Одессе. Наблюдения метеоров позволяют изучать не только состав космических пылинок, но и строение земной атмосферы на высотах 50-100 км, труднодоступных для прямого зондирования. Наибольшее развитие метеорный патруль получил в виде трех "болидных сетей" - в США, Канаде и Европе. Например, Прерийная сеть Смитсоновской обсерватории (США) для фотографирования ярких метеоров - болидов - использовала 2,5-см автоматические камеры на 16 станциях, размещенных на расстоянии 260 км вокруг Линкольна (шт. Небраска). С 1963 развивалась Чешская болидная сеть, превратившаяся позже в Европейскую сеть из 43 станций на территориях Чехии, Словакии, Германии, Бельгии, Нидерландов, Австрии и Швейцарии. Ныне это единственная действующая болидная сеть. Ее станции оснащены камерами типа "рыбий глаз", позволяющими фотографировать сразу всю полусферу неба. С помощью болидных сетей несколько раз удалось найти выпавшие на землю метеориты и восстановить их орбиту до столкновения с Землей.
Наблюдения Солнца. Многие обсерватории регулярно фотографируют Солнце. Количество темных пятен на его поверхности служит индикатором активности, которая периодически увеличивается в среднем каждые 11 лет, приводя к нарушению радиосвязи, усилению полярных сияний и другим изменениям в атмосфере Земли. Важнейший прибор для изучения Солнца - спектрограф. Пропуская солнечный свет через узкую щель в фокусе телескопа и затем разлагая его в спектр при помощи призмы или дифракционной решетки, можно узнать химический состав солнечной атмосферы, скорость движения в ней газа, его температуру и магнитное поле. С помощью спектрогелиографа можно получить фотографии Солнца в линии излучения одного элемента, например, водорода или кальция. На них отчетливо видны протуберанцы - огромные облака газа, взлетающие над поверхностью Солнца. Большой интерес представляет горячая разреженная область солнечной атмосферы - корона, которая обычно видна лишь в моменты полных солнечных затмений. Однако на некоторых высокогорных обсерваториях созданы специальные телескопы - внезатменные коронографы, в которых маленькая заслонка ("искусственная Луна") закрывает яркий диск Солнца, позволяя наблюдать его корону в любое время. Такие наблюдения проводят на о.Капри (Италия), в обсерватория Сакраменто-Пик (шт. Нью Мексико, США), Пик-дю-Миди (французские Пиренеи) и других.



Наблюдения Луны и планет. Поверхность планет, спутников, астероидов и комет изучают с помощью спектрографов и поляриметров, определяя химический состав атмосферы и особенности твердой поверхности. Весьма активны в этих наблюдениях обсерватория Ловелла (шт. Аризона), Медонская и Пик-дю-Миди (Франция), Крымская (Украина). Хотя в последние годы много замечательных результатов получено с помощью космических аппаратов, наземные наблюдения не потеряли своей актуальности и ежегодно приносят новые открытия.
Наблюдения звезд. Измеряя интенсивность линий в спектре звезды, астрономы определяют содержание химических элементов и температуру газа в ее атмосфере. По положению линий на основе эффекта Доплера определяют скорость движения звезды как целого, а по форме профиля линий - скорость газовых потоков в атмосфере звезды и скорость ее вращения вокруг оси. Часто в спектрах звезд видны линии разреженного межзвездного вещества, находящегося между звездой и земным наблюдателем. Систематически наблюдая спектр одной звезды, можно изучить колебания ее поверхности, установить наличие у нее спутников и потоков вещества, иногда перетекающих с одной звезды на другую. С помощью спектрографа, помещенного в фокусе телескопа, за десятки минут экспозиции можно получить детальный спектр лишь одной звезды. Для массового изучения спектров звезд перед объективом широкоугольной (шмидтовской или максутовской) камеры помещают большую призму. При этом на фотопластинке получается участок неба, где каждое изображение звезды представлено ее спектром, качество которого невысоко, но достаточно для массового изучения звезд. Такие наблюдения многие годы проводятся в обсерватории Мичиганского университета (США) и в Абастуманской обсерватории (Грузия). Недавно созданы оптоволоконные спектрографы: в фокусе телескопа размещают световоды; каждый из них одним концом устанавливают на изображение звезды, а другим - на щель спектрографа. Так за одну экспозицию можно получить детальные спектры сотен звезд. Пропуская свет звезды через различные светофильтры и измеряя его яркость, можно определить цвет звезды, который указывает на температуру ее поверхности (чем голубее, тем горячее) и количество межзвездной пыли, лежащей между звездой и наблюдателем (чем больше пыли, тем краснее звезда). Многие звезды периодически или хаотически меняют свою яркость - их называют переменными. Изменения яркости, связанные с колебаниями поверхности звезды или с взаимными затмениями компонентов двойных систем, многое говорят о внутреннем строении звезд. Исследуя переменные звезды, важно иметь длительные и плотные ряды наблюдений. Поэтому астрономы часто привлекают к этой работе любителей: даже глазомерные оценки яркости звезд в бинокль или небольшой телескоп имеют научную ценность. Любители астрономии часто объединяются в клубы для совместных наблюдений. Кроме изучения переменных звезд, они нередко открывают кометы и вспышки новых звезд, чем также вносят заметный вклад в астрономию. Слабые звезды изучают только с помощью крупных телескопов с фотометрами. Например, телескоп диаметром 1 м собирает света в 25 000 раз больше, чем зрачок человеческого глаза. Использование фотопластинки при длительной экспозиции повышает чувствительность системы еще в тысячи раз. Современные фотометры с электронными приемниками света, такими, как фотоэлектронный умножитель, электронно-оптический преобразователь или полупроводниковая ПЗС-матрица, в десятки раз чувствительнее фотопластинок и позволяют непосредственно записывать результаты измерения в память компьютера.
Наблюдения слабых объектов. Наблюдения далеких звезд и галактик проводят с помощью крупнейших телескопов диаметром от 4 до 10 м. Ведущая роль в этом принадлежит обсерваториям Мауна-Кеа (Гавайи), Паломарская (Калифорния), Ла-Силья и Сьерра-Тололо (Чили), Специальная астрофизическая (Россия). Для массового изучения слабых объектов используются крупные камеры Шмидта на обсерваториях Тонантцинтла (Мексика), Маунт-Стромло (Австралия), Блумфонтейн (Ю. Африка), Бюракан (Армения). Эти наблюдения позволяют наиболее глубоко проникать во Вселенную и изучать ее структуру и происхождение.
Программы совместных наблюдений. Многие программы наблюдений осуществляются совместно несколькими обсерваториями, взаимодействие которых поддерживается Международным астрономическим союзом (МАС). Он объединяет около 8 тыс. астрономов всего мира, имеет 50 комиссий по различным направлениям науки, 1 раз в три года собирает крупные Ассамблеи и ежегодно организует несколько больших симпозиумов и коллоквиумов. Каждая комиссия МАС координирует наблюдения объектов определенного класса: планет, комет, переменных звезд, и т.п. МАС координирует работу многих обсерваторий по составлению звездных карт, атласов и каталогов. В Смитсоновской астрофизической обсерватории (США) действуют Центральное бюро астрономических телеграмм, которое быстро оповещает всех астрономов о неожиданных событиях - вспышках новых и сверхновых звезд, открытии новых комет и др.
РАДИООБСЕРВАТОРИИ
Развитие техники радиосвязи в 1930-1940-е годы позволило начать радионаблюдения космических тел. Это новое "окно" во Вселенную принесло множество удивительных открытий. Из всего спектра электромагнитного излучения только оптические и радиоволны проходят сквозь атмосферу к поверхности Земли. При этом "радиоокно" намного шире оптического: оно простирается от волн миллиметровой длины до десятков метров. Кроме известных в оптической астрономии объектов - Солнца, планет и горячих туманностей, - источниками радиоволн оказались неизвестные ранее объекты: холодные облака межзвездного газа, ядра галактик и взрывающиеся звезды.
Типы радиотелескопов. Радиоизлучение космических объектов является очень слабым. Чтобы заметить его на фоне естественных и искусственных помех, необходимы узконаправленные антенны, принимающие сигнал только из одной точки на небе. Такие антенны бывают двух типов. Для коротковолнового излучения их делают из металла в виде вогнутого параболического зеркала (как у оптического телескопа), которое концентрирует в фокусе падающее на него излучение. Такие рефлекторы диаметром до 100 м - полноповоротные - способны смотреть в любую часть неба (как оптический телескоп). Более крупные антенны выполняют в виде параболического цилиндра, способного поворачиваться только в плоскости меридиана (как оптический меридианный круг). Поворот вокруг второй оси обеспечивает вращение Земли. Самые крупные параболоиды делают неподвижными, используя естественные котловины в грунте. Они могут наблюдать лишь ограниченную область неба. Таблица 2.
КРУПНЕЙШИЕ РАДИОТЕЛЕСКОПЫ
________________________________________________
Наибольший __ Обсерватория _____Место и год _размер ____________________сооружения/демонтажа
антенны (м)
________________________________________________
1000 1 Физического института им.Лебедева, РАН Серпухов (Россия) 1963 600 1 Специальная астрофизическая АН России Сев.Кавказ (Россия) 1975 305 2 Ионосферная Аресибо Аресибо (Пуэрто-Рико) 1963 305 1 Медонская Медон (Франция) 1964 183 Иллинойсского университета Дэнвиль (шт. Иллинойс) 1962 122 Калифорнийского университета Хэт-Крик (шт. Калифорния) 1960 110 1 Огайоского университета Делавэр (шт. Огайо) 1962 107 Стэнфордской радиолаборатории Стэнфорд (шт. Калифорния) 1959 100 Института им. Макса Планка Бонн (Германия) 1971 76 Джодрелл-Бэнк Маклсфилд (Англия) 1957 ________________________________________________
Примечания:
1 антенна с незаполненной апертурой;
2 неподвижная антенна. ________________________________________________
Антенны для длинноволнового излучения монтируют из большого числа простых металлических диполей, размещаемых на площади в несколько квадратных километров и соединяемых между собой так, что принятые ими сигналы усиливают друг друга только в том случае, если приходят с определенного направления. Чем больше размер антенны, тем более узкую область на небе она осматривает, давая при этом более четкую картину объекта. Примером такого инструмента может служить УТР-2 (Украинский Т-образный радиотелескоп) харьковского Института радиофизики и электроники АН Украины. Длина двух его плеч 1860 и 900 м; он является самым совершенным в мире инструментом для исследования декаметрового излучения в диапазоне 12-30 м. Принцип объединения нескольких антенн в систему используется и для параболических радиотелескопов: объединив сигналы, принятые от одного объекта несколькими антеннами, получают как бы один сигнал от эквивалентной по размеру одной гигантской антенны. Это существенно улучшает качество полученных радиоизображений. Такие системы называют радиоинтерферометрами, поскольку сигналы от разных антенн, складываясь, интерферируют между собой. Изображения от радиоинтерферометров по качеству не хуже оптических: наименьшие детали имеют размер около 1", а если объединить сигналы от антенн, находящихся на разных континентах, то размер наименьших деталей на изображении объекта может быть уменьшен еще в тысячи раз. Собранный антенной сигнал детектируется и усиливается специальным приемником - радиометром, который обычно настроен на одну фиксированную частоту или меняет настройку в узкой полосе частот. Для уменьшения собственных шумов радиометры часто охлаждают до очень низкой температуры. Усиленный сигнал записывают на магнитофон или в компьютер. Мощность принятого сигнала обычно выражается в терминах "антенной температуры", как если бы на месте антенны находилось абсолютно черное тело данной температуры, выделяющее такую же мощность. Измерив мощность сигнала на разных частотах, строят радиоспектр, форма которого позволяет судить о механизме излучения и физической природе объекта. Радиоастрономические наблюдения можно проводить ночью и днем, если не мешают помехи от промышленных объектов: искрящие электромоторы, широковещательные радиостанции, радары. По этой причине радиообсерватории обычно устраивают вдали от городов. Особых требований к качеству атмосферы у радиоастрономов нет, но при наблюдении на волнах короче 3 см атмосфера становится помехой, поэтому коротковолновые антенны предпочитают ставить высоко в горах. Некоторые радиотелескопы используют как радары, посылая мощный сигнал и принимая отраженный от объекта импульс. Это позволяет точно определять расстояние до планет и астероидов, измерять их скорость и даже строить карту поверхности. Именно так были получены карты поверхности Венеры, которая не видна в оптике сквозь ее плотную атмосферу.
См. также
РАДИОАСТРОНОМИЯ ;
РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ .
Радиоастрономические наблюдения. В зависимости от параметров антенны и имеющейся аппаратуры каждая радиообсерватория специализируется на определенном классе объектов наблюдения. Солнце благодаря своей близости к Земле является мощным источником радиоволн. Приходящее из его атмосферы радиоизлучение постоянно регистрируют - это позволяет прогнозировать солнечную активность. В магнитосфере Юпитера и Сатурна происходят активные процессы, радиоимпульсы от которых регулярно наблюдаются в обсерваториях Флориды, Сантьяго и Йельского университета. Крупнейшие антенны Англии, США и России используются для радиолокации планет. Замечательным открытием было обнаруженное в Лейденской обсерватории (Нидерланды) излучение межзвездного водорода на волне 21 см. Затем по радиолиниям в межзвездной среде были найдены десятки других атомов и сложных молекул, включая органические. Особенно интенсивно молекулы излучают на миллиметровых волнах, для приема которых создаются специальные параболические антенны с высокоточной поверхностью. Сначала в Кембриджской радиообсерватории (Англия), а затем и в других с начала 1950-х годов проводятся систематические обзоры всего неба для выявления радиоисточников. Некоторые из них совпадают с известными оптическими объектами, но многие не имеют аналогов в других диапазонах излучения и, по-видимому, являются очень далекими объектами. В начале 1960-х годов, обнаружив совпадающие с радиоисточниками слабые звездообразные объекты, астрономы открыли квазары - очень далекие галактики с невероятно активными ядрами. Время от времени на некоторых радиотелескопах предпринимаются попытки поиска сигналов от внеземных цивилизаций. Первым проектом такого рода был проект Национальной радиоастрономической обсерватории США в 1960 по поиску сигналов от планет ближайших звезд. Как и все последующие поиски, он принес отрицательный результат.
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ
Поскольку атмосфера Земли не пропускает к поверхности планеты рентгеновское, инфракрасное, ультрафиолетовое и некоторые виды радиоизлучения, приборы для их исследования устанавливают на искусственных спутниках Земли, космических станциях или межпланетных аппаратах. От этих приборов требуются малая масса и высокая надежность. Обычно запускают специализированные астрономические спутники для наблюдения в определенном диапазоне спектра. Даже оптические наблюдения предпочтительно проводить за пределами атмосферы, которая существенно искажает изображения объектов. К сожалению, космическая техника стоит очень дорого, поэтому внеатмосферные обсерватории создают либо самые богатые страны, либо несколько стран в кооперации друг с другом. Вначале разработкой приборов для астрономических спутников и анализом полученных данных занимались определенные группы ученых. Но по мере роста продуктивности космических телескопов сложилась система сотрудничества, аналогичная принятой в национальных обсерваториях. Например, Космический телескоп "Хаббл" (США) доступен любому астроному мира: заявки на наблюдения принимают и оценивают, наиболее достойные из них осуществляют и результаты передают ученому для анализа. Эту деятельность организует Институт космического телескопа (Space Telescope Science Institute).
- (ново лат. observatorium, от observare наблюдать). Здание для физических и астрономических наблюдений. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ОБСЕРВАТОРИЯ здание, служащее для астрономических,… … Словарь иностранных слов русского языка

  • ОБСЕРВАТОРИЯ , учреждение для производства астрономических или геофизических (магнитометрических, метеорологических и сейсмических) наблюдений; отсюда подразделение обсерваторий на астрономические, магнитометрические, метеорологические и сейсмические.

    Астрономическая обсерватория

    По своему назначению астрономические обсерватории можно разделить на два главных типа: астрометрические и астрофизические обсерватории. Астрометрические обсерватории занимаются определением точных положений звезд и других светил для разных целей и, в зависимости от этого, разными инструментами и методами. Астрофизические обсерватории изучают различные физические свойства небесных тел, например, температуру, яркость, плотность, а также другие свойства, требующие физических методов исследования, например, движение звезд по лучу зрения, диаметры звезд, определяемые интерференционным способом, и т. д. Многие большие обсерватории преследуют смешанные цели, но имеются обсерватории и более узкого назначения, например, для наблюдения изменяемости географической широты, для поисков малых планет, наблюдения переменных звезд и т. п.

    Местоположение обсерватории должно удовлетворять ряду требований, к числу которых относятся: 1) полное отсутствие сотрясении, вызываемых близостью железных дорог, уличного движения или фабрик, 2) наибольшая чистота и прозрачность воздуха - отсутствие пыли, дыма, тумана, 3) отсутствие освещенности неба, вызываемой близостью города, фабрик, железнодорожных станций и т. п., 4) спокойствие воздуха в ночные часы, 5) достаточно открытый горизонт. Условия 1, 2, 3 и отчасти 5 заставляют выносить обсерватории за город, нередко даже на значительные высоты над уровнем моря, создавая горные обсерватории. Условие 4 зависит от ряда причин частью общеклиматического (ветры, влажность), частью местного характера. Во всяком случае оно заставляет избегать мест с сильными воздушными течениями, например, возникающими от сильного нагревания почвы солнцем, резкими колебаниями температуры и влажности. Наиболее благоприятными являются местности, покрытые равномерным растительным покровом, с сухим климатом, на достаточной высоте над уровнем моря. Современные обсерватории состоят обычно из отдельных павильонов, расположенных среди парка или разбросанных по лугу, в которых установлены инструменты (фиг. 1).

    В стороне располагают лаборатории - помещения для измерительной и вычислительной работы, для исследования фотографических пластинок и для производства различных опытов (например, для исследования излучения абсолютно черного тела, как эталона при определении температуры звезд), механическую мастерскую, библиотеку и жилые помещения. В одном из зданий устраивается подвал для часов. Если обсерватория не присоединена к электрической магистрали, то устраивается собственная электростанция.

    Инструментальное оборудование обсерваторий бывает весьма разнообразным в зависимости от назначения. Для определения прямых восхождений и склонений светил употребляется меридианный круг, дающий одновременно обе координаты. На некоторых обсерваториях, по примеру Пулковской обсерватории, употребляются для этой цели два различных инструмента: пассажный инструмент и вертикальный круг, позволяющие определять упомянутые координаты раздельно. Самые наблюдения разделяются на фундаментальные и относительные. Первые состоят в независимом выводе самостоятельной системы прямых восхождений и склонений с определением положения точки весеннего равноденствия и экватора. Вторые заключаются в привязке наблюдаемых звезд, обыкновенно расположенных в неширокой зоне по склонению (отсюда термин: зонные наблюдения), к опорным звездам, положение которых известно из фундаментальных наблюдений. Для относительных наблюдений в настоящее время все больше применяется фотография, причем данный участок неба снимают специальными трубами с фотокамерой (астрографами ) с достаточно большим фокусным расстоянием (обычно 2-3,4 м). Относительное определение положения близких между собою объектов, например, двойных звезд, малых планет и комет, по отношению к близлежащим звездам, спутников планет относительно самой планеты, определение годичных параллаксов - производится при помощи экваториалов как визуальным путем – посредством окулярного микрометра, так и фотографическим, в котором окуляр заменен фотографической пластинкой. Для этой цели применяются самые большие инструменты, с объективами 0 до 1 м. Изменяемость широты исследуется преимущественно при помощи зенит-телескопов.

    Главные наблюдения астрофизического характера бывают фотометрическими, включая сюда и колориметрию , т. е. определение цвета звезд, и спектроскопическими. Первые производятся при помощи фотометров, устанавливаемых в виде самостоятельных инструментов или, чаще, пристраиваемых к рефрактору или рефлектору. Для спектральных наблюдений служат спектрографы со щелью, которые присоединяются к самым большим рефлекторам (с зеркалом 0 до 2,5 м) или в устаревших случаях - к большим рефракторам. Получаемые фотографии спектров служат для различных целей, как то: определение лучевых скоростей, спектроскопических параллаксов, температуры. Для общей классификации звездных спектров могут употребляться более скромные инструменты - т. н. призматические камеры , состоящие из светосильной короткофокусной фотографической камеры с призмой перед объективом, дающие на одной пластинке спектры многих звезд, но с малой дисперсией. Для спектральных же исследований солнца, а также и звезд, на некоторых обсерваториях употребляются т. н. башенные телескопы , представляющие известные преимущества. Они состоят из башни (до 45 м высотой), на вершине которой установлен целостат, посылающий лучи светила вертикально вниз; несколько ниже целостата помещается объектив, через который проходят лучи, собираясь в фокусе на уровне земли, где они вступают в вертикальный или горизонтальный спектрограф, находящийся в условиях постоянной температуры.

    Упомянутые выше инструменты устанавливаются на солидных каменных столбах с глубоким и большим фундаментом, стоящих изолированно от прочего здания, чтобы не передавались сотрясения. Рефракторы и рефлекторы помещаются в круглых башнях (фиг. 2), покрытых полусферическим вращающимся куполом с раскрывающимся люком, через который происходит наблюдение.

    Для рефракторов пол в башне делается подъемным, для того чтобы наблюдатель мог удобно достигать окулярного конца телескопа при всяких наклонах последнего к горизонту. В башнях рефлекторов вместо подъемного пола обычно употребляются лестницы и небольшие подъемные платформы. Башни больших рефлекторов должны иметь такое устройство, которое обеспечивало бы хорошую температурную изоляцию днем против нагревания и достаточную вентиляцию ночью, при открытом куполе. Инструменты, предназначенные для наблюдения в одном определенном вертикале, - меридианный круг, пассажный инструмент и отчасти вертикальный круг - устанавливаются в павильонах из волнистого железа (фиг. 3), имеющих форму лежащего полуцилиндра. Путем открывания широких люков или откатывания стен образуется широкая щель в плоскости меридиана или первого вертикала, смотря по установке инструмента, позволяющая производить наблюдения.

    Устройство павильона должно предусматривать хорошую вентиляцию, т. к. при наблюдении температура воздуха внутри павильона должна равняться внешней температуре, чем устраняется неправильное преломление луча зрения, называемое зальной рефракцией (Saalrefraktion). При пассажных инструментах и меридианных кругах часто устраивают миры, представляющие собою прочные метки, устанавливаемые в плоскости меридиана на некотором расстоянии от инструмента.

    Обсерватории, несущие службу времени, а также производящие фундаментальные определения прямых восхождений, требуют большую часовую установку. Часы помещаются в подвале, в условиях постоянной температуры. В особом зале помещаются распределительные доски и хронографы для сравнения часов. Здесь же устанавливается приемная радиостанция. Если обсерватория подает сама сигналы времени, то требуется еще установка для автоматической посылки сигналов; передача же производиться через одну из мощных передаточных радиостанций.

    Помимо постоянно функционирующих обсерваторий иногда устраиваются обсерватории и станции временные, предназначенные либо для наблюдения кратковременных явлений, главным образом солнечных затмений (прежде также прохождений Венеры по диску солнца), либо для производства определенной работы, по окончании которой такая обсерватория опять закрывается. Так, некоторые европейские и в особенности североамериканские обсерватории открывали временные - на несколько лет - отделения в южном полушарии для наблюдения южного неба в целях составления позиционных, фотометрических или спектроскопических каталогов южных звезд теми же методами и инструментами, которые употреблялись для той же цели на основной обсерватории в северном полушарии. Общее число ныне действующих астрономических обсерваторий доходит до 300. Некоторые данные, а именно: местоположение, главные инструменты и основные работы относительно главнейших современных обсерваторий приведены в таблице.

    Магнитная обсерватория

    Магнитная обсерватория - станция, ведущая регулярные наблюдения над геомагнитными элементами. Она является опорным пунктом для геомагнитной съемки примыкающего к ней района. Материал, который дает магнитная обсерватория, является основным в деле изучения магнитной жизни земного шара. Работа магнитной обсерватории может быть разделена на следующие циклы: 1) изучение временных вариаций элементов земного магнетизма, 2) регулярные измерения их в абсолютной мере, 3) изучение и исследование геомагнитных приборов, употребляющихся при магнитных съемках, 4) специальные работы научно-исследовательского характера в области геомагнитных явлений.

    Для проведения указанных работ магнитная обсерватория имеет комплект нормальных геомагнитных приборов для измерения элементов земного магнетизма в абсолютной мере: магнитный теодолит и инклинатор , обычно индукционного типа, как более совершенный. Эти приборы д. б. сличены со стандартными приборами, имеющимися в каждой стране (в СССР они хранятся в Слуцкой магнитной обсерватории), в свою очередь сличенными с международным стандартом в Вашингтоне. Для изучения временных вариаций земного магнитного поля обсерватория имеет в своем распоряжении один или два комплекта вариационных приборов - вариометры D, Н и Z, - обеспечивающих непрерывную запись изменений элементов земного магнетизма с течением времени. Принцип действия вышеуказанных приборов - см. Земной магнетизм . Ниже описываются конструкции наиболее распространенных из них.

    Магнитный теодолит для абсолютных измерений Н представлен на фиг. 4 и 5. Здесь А - горизонтальный круг, отсчеты по которому берутся при помощи микроскопов В; I - труба для наблюдений по способу автоколлимации; С - домик для магнита m, D - аретирующее приспособление, укрепленное в основании трубки, внутри которой проходит нить, поддерживающая магнит m. В верхней части этой трубки имеется головка F, с которой скреплена нить. Отклоняющие (вспомогательные) магниты помещаются на лагерах М 1 и М 2 ; ориентировка магнита на них определяется по специальным кругам с отсчетами при помощи микроскопов а и b. Наблюдения склонения ведутся при помощи того же теодолита, либо устанавливается специальный деклинатор , конструкция которого в общих чертах такая же, как и описанного прибора, но без приспособлений для отклонений. Для определения места истинного севера на азимутальном круге пользуются специально выставленной мерой, истинный азимут которой определяется при помощи астрономических или же геодезических измерений.

    Земной индуктор (инклинатор ) для определения наклонения изображен на фиг. 6 и 7. Сдвоенная катушка S может вращаться около оси, лежащей на подшипниках, укрепленных в кольце R. Положение оси вращения катушки определяется по вертикальному кругу V при помощи микроскопов М, М. Н - горизонтальный круг, служащий для установок оси катушки в плоскости магнитного меридиана, К - коммутатор для преобразования переменного тока, получаемого при вращении катушки, в ток постоянный. От зажимов этого коммутатора ток подается на чувствительный гальванометр с сатазированной магнитной системой.

    Вариометр Н изображен на фиг. 8. Внутри небольшой камеры подвешен на кварцевой нити или на бифиляре магнит М. Верхняя точка крепления нити находится вверху трубки подвеса и связана с могущей вращаться около вертикальной оси головкой Т.

    Неразрывно с магнитом скреплено зеркальце S, на которое падает луч света из осветителя регистрирующего аппарата. Рядом с зеркальцем укреплено неподвижное зеркальце В, назначение которого прочерчивать на магнитограмме базисную линию. L - линза, дающая на барабане регистрирующего аппарата изображение щели осветителя. Перед барабаном установлена цилиндрическая линза, сводящая это изображение в точку. Т. о. запись на фотобумаге, навернутой на барабан, производится перемещением по образующей барабана светового пятна от луча света, отраженного от зеркальца S. Конструкция вариометра В в деталях такая же, как и описанного прибора, за исключением ориентировки магнита М по отношению к зеркальцу S.

    Вариометр Z (фиг. 9) в существенных чертах состоит из магнитной системы, колеблющейся около горизонтальной оси. Система заключена внутри камеры 1, которая имеет в передней своей части отверстие, закрытое линзой 2. Колебания магнитной системы записываются регистратором благодаря зеркальцу, которое скреплено с системой. Для построения базисной линии служит неподвижное зеркальце, расположенное рядом с подвижным. Общее расположение вариометров при наблюдениях изображено на фиг. 10.

    Здесь R - регистрирующий аппарат, U - его часовой механизм, который вращает барабан W с светочувствительной бумагой, l - цилиндрическая линза, S - осветитель, Н, D, Z - вариометры для соответствующих элементов земного магнетизма. В вариометре Z буквами L, М и t обозначены соответственно линза, зеркало, связанное с магнитной системой, и зеркало, скрепленное с приспособлением для регистрации температур. В зависимости от тех специальных задач, в разрешении которых принимает участие обсерватория, ее дальнейшее оборудование носит уже специальный характер. Надежная работа геомагнитных приборов требует особых условий в смысле отсутствия возмущающих магнитных полей, постоянства температуры и проч.; поэтому магнитные обсерватории выносят далеко за город с его электрическими установками и устраивают т. о., чтобы гарантировать желательную степень постоянства температуры. Для этого павильоны, где производятся магнитные измерения, строятся обыкновенно с двойными стенами и отопительная система располагается по коридору, Образованному внешними и внутренними стенами здания. В целях исключения взаимного влияния вариационных приборов на нормальные, те и другие устанавливаются обыкновенно в разных павильонах, несколько удаленных друг от друга. При постройке таких зданий д. б. обращено особенное внимание на то, чтобы внутри них и поблизости не оказалось никаких железных масс, в особенности перемещающихся. В отношении электропроводки д. б. соблюдены условия, гарантирующие отсутствие магнитных полей электрического тока (бифилярная проводка). Близость сооружений, создающих механические сотрясения, является недопустимой.

    Поскольку магнитная обсерватория является основным пунктом для изучения магнитной жизни: земли, совершенно естественным является требование б. или м. равномерного распределения их на всей поверхности земного шара. В настоящий момент это требование удовлетворено только приблизительно. Помещенная ниже таблица, представляющая список магнитных обсерваторий, дает представление о степени выполнения этого требования. В таблице курсивом обозначено среднее годовое изменение элемента земного магнетизма, обусловленное вековым ходом.

    Наиболее богатый материал, собранный магнитными обсерваториями, заключается в изучении временных вариаций геомагнитных элементов. Сюда относятся суточный, годовой и вековой ход, а также и те внезапные изменения в магнитном поле земли, которые получили название магнитных бурь. В результате изучения суточных вариаций явилось возможным выделить в них влияние положения солнца и луны по отношению к месту наблюдения и установить роль этих двух космических тел в суточных изменениях геомагнитных элементов. Основной причиной вариаций является солнце; влияние луны не превышает 1/15 действия первого светила. Амплитуда суточных колебаний в среднем имеет величину порядка 50 γ (γ = 0,00001 гаусса, см. Земной магнетизм), т. е. около 1/1000 полного напряжения; она меняется в зависимости от географической широты места наблюдения и в сильной степени зависит от времени года. Как правило, амплитуда суточных вариаций летом больше, чем зимой. Изучение распределения во времени магнитных бурь привело к констатированию связи их с деятельностью солнца. Количество бурь и их интенсивность совпадают по времени с количеством солнечных пятен. Это обстоятельство позволило Штормеру создать теорию, объясняющую возникновение магнитных бурь проникновением в верхние слои нашей атмосферы электрических зарядов, выбрасываемых солнцем в периоды наибольшей его активности, и параллельным образованием кольца движущихся электронов на значительной высоте, почти за пределами атмосферы, в плоскости земного экватора.

    Метеорологическая обсерватория

    Обсерватория метеорологическая , высшее научное учреждение для изучения вопросов, связанных с физической жизнью земли в самом широком смысле. Эти обсерватории в настоящее время занимаются не только чисто метеорологическими и климатологическими вопросами и службой погоды, но и вносят в круг своих задач вопросы земного магнетизма, атмосферного электричества и атмосферной оптики; на некоторых обсерваториях ведутся даже наблюдения сейсмические. Поэтому такие обсерватории носят более широкое наименование - геофизические обсерватории или институты.

    Собственные наблюдения обсерваторий в области метеорологии имеют в виду давать строго научный материал наблюдений, производимых над метеорологическими элементами, необходимый для целей климатологии, службы погоды и удовлетворения ряда практических запросов на основе записей самопишущих приборов с непрерывной регистрацией всех изменений в ходе метеорологических элементов. Непосредственные наблюдения в определенные срочные часы производятся над такими элементами, как давление воздуха (см. Барометр), температура и влажность его (см. Гигрометр), над направлением и скоростью ветра, солнечным сиянием, атмосферными осадками и испарением, снеговым покровом, температуры почвы и другими атмосферными явлениями по программе рядовых метеорологии, станций 2-го разряда. Помимо этих программных наблюдений на метеорологических обсерваториях производятся контрольные наблюдения, а также проводятся исследования методологического характера, выражающиеся в установлении и испытании новых методов наблюдений над явлениями, как уже отчасти изученными; так и вовсе не изученными. Наблюдения обсерваторий должны быть продолжительными, чтобы из них иметь возможность сделать ряд выводов для получения с достаточной точностью средних «нормальных» величин, для определения величины непериодических колебаний, свойственных данному месту наблюдений, и для определения закономерности в ходе этих явлений со временем.

    Кроме производства собственных метеорологических наблюдений одной из крупных задач обсерваторий является изучение всей страны в целом или отдельных областей ее в физическом отношений и гл. обр. с точки зрения климата. Наблюдательный материал, поступающий с сети метеорологических станций в обсерваторию, подвергается здесь детальному изучению, контролю и тщательной проверке, чтобы отобрать наиболее доброкачественные наблюдения, которые уже могут пойти для дальнейшей проработки. Первоначальные выводы из этого проверенного материала публикуются в изданиях обсерватории. Такие издания по сети станций быв. России и СССР охватывают наблюдения, начиная с 1849 года. В этих изданиях публикуются гл. обр. выводы из наблюдений, и только для незначительного числа станций наблюдения печатаются полностью.

    Остальной обработанный и проверенный материал хранится в архиве обсерватории. В результате глубокой и тщательной проработки этих материалов время от времени появляются различные монографии, или характеризующие методику обработки или касающиеся разработки отдельных метеорологических элементов.

    Одной из специфических особенностей деятельности обсерваторий является особая служба предсказаний и оповещений о состоянии погоды. В настоящее время служба эта выделена из состава Главной геофизической обсерватории в виде самостоятельного института - Центральное бюро погоды. Чтобы показать развитие и достижения нашей службы погоды, ниже приведены данные о числе принятых в Бюро погоды за сутки телеграмм, начиная с 1917 г.

    В настоящее время Центральное бюро погоды получает до 700 одних только внутренних телеграмм кроме сводок. Помимо этого, здесь же проводятся крупные работы по улучшению методов предсказывания погоды. Что касается степени удачности краткосрочных предсказаний, она определяется в 80-85%. Помимо краткосрочных прогнозов в настоящее время разработаны методы и даются долгосрочные предсказания общего характера погоды на предстоящий сезон или на небольшие периоды, или детальные предсказания по отдельным вопросам (вскрытия и замерзания рек, половодий, гроз, метелей, градобития и пр.).

    Для того чтобы наблюдения, производящиеся на станциях метеорологической сети, были сравнимы между собой, необходимо, чтобы приборы, по которым производятся эти наблюдения, были сравнены с «нормальными» эталонами, принятыми на международных съездах. Задача проверки приборов разрешается специальным отделом обсерватории; на всех станциях сети применяются только приборы, проверенные на обсерватории и снабженные особыми сертификатами, дающими или поправки, или постоянные для соответствующих приборов при данных условиях наблюдений. Помимо этого, в тех же целях сравнимости результатов непосредственных метеорологических наблюдений на станциях и обсерватории наблюдения эти должны производиться в строго определенные сроки и по определенной программе. В виду этого обсерватория издает специальные инструкции для производства наблюдений, перерабатываемые от времени до времени на основании опытов, прогресса науки и в соответствии с постановлениями международных съездов и конференций. Обсерваторией же вычисляются и издаются специальные таблицы для обработки метеорологических наблюдений, производимых на станциях.

    Кроме метеорологических ряд обсерваторий ведет также актинометрические исследования и систематические наблюдения над напряженностью солнечной радиации, над диффузной радиацией и над собственным излучением земли. В этом отношении заслуженную известность имеет обсерватория в Слуцке (б. Павловск), где сконструировано не малое число приборов как для непосредственных измерений, так и для непрерывных автоматических записей изменений различных элементов излучения (актинографы), и здесь установлены эти приборы для работы ранее, чем на обсерваториях других стран. В некоторых случаях ведутся исследования по изучению энергии в отдельных участках спектра помимо интегрального лучеиспускания. Вопросы, связанные с поляризацией света, также составляют предмет специального изучения обсерваторий.

    Научные полеты на аэростатах и свободных воздушных шарах, производимые многократно для проведения непосредственных наблюдений над состоянием метеорологических элементов в свободной атмосфере, хотя и доставили ряд весьма ценных данных для познания жизни атмосферы и законов, управляющих ею, тем не менее эти полеты имели лишь весьма ограниченное применение в повседневной жизни вследствие значительных затрат, связанных с ними, а также и трудностью достижения больших высот. Успехи авиации предъявляли настойчивые требования к выяснению состояния метеорологических элементов и гл. обр. направления и скорости ветра на различных высотах в свободной атмосфере и т. о. выдвинули значение аэрологических исследований. Были организованы особые институты, выработаны специальные методы подъема самопишущих приборов различных конструкций, которые поднимаются на высоту на воздушных змеях или с помощью особых резиновых шаров, наполненных водородом. Записи таких самописцев дают информацию о состоянии давления, температуре и влажности, а также о скоростях движения воздуха и направлении на различных высотах в атмосфере. В случае, когда требуются сведения только о ветре в различных слоях, производятся наблюдения над небольшими шарами-пилотами, свободно выпускаемыми из места наблюдения. В виду огромного значения таких наблюдений для целей воздушного транспорта, обсерваторией организуется целая сеть аэрологических пунктов; обработка результатов произведенных наблюдений, а также решение ряда задач теоретического и практического значения, касающихся движения атмосферы, проводятся на обсерваториях. Систематические наблюдения на высокогорных обсерваториях также дают материал для познания законов циркуляции атмосферы. Помимо этого, такие высокогорные обсерватории имеют значение в вопросах, касающихся питания рек, берущих начало с ледников, и связанных с этим вопросов ирригации, что важно в полупустынных климатах, например, в Средней Азии.

    Переходя к наблюдениям над элементами атмосферного электричества, проводимым на обсерваториях, необходимо указать, что они имеют непосредственную связь с радиоактивностью и кроме того имеют известное значение в развитии с.-х. культур. Цель этих наблюдений заключается в измерении радиоактивности и степени ионизации воздуха, а также в определении электрического состояния осадков, выпадающих на землю. Всякие нарушения, происходящие в электрическом поле земли, вызывают нарушения в беспроволочной, а иногда даже и в проволочной связи. Обсерватории, расположенные в приморских пунктах, в программу своих работ и исследований включают изучение гидрологии моря, наблюдения и прогнозы о состоянии моря, что имеет непосредственное значение для целей морского транспорта.

    Кроме получения наблюдательного материала, обработки его и возможных выводов во многих случаях представляется необходимым подвергнуть экспериментальному и теоретическому изучению наблюдаемые в природе явления. Отсюда вытекают задачи лабораторного и математического исследования, проводимые обсерваториями. В условиях лабораторного опыта иногда удается воспроизвести то или иное атмосферное явление, всесторонне изучить условия возникновения и причины его. В этом отношении можно указать на работы, проведенные в Главной геофизической обсерватории, например, по изучению явления донного льда и определению мер борьбы с этим явлением. Точно так же в лаборатории обсерватории подвергался изучению вопрос о скорости охлаждения нагретого тела в воздушном потоке, что имеет прямую связь с разрешением проблемы переноса тепла в атмосфере. Наконец математический анализ находит себе широкое применение при решении ряда вопросов, связанных с процессами и различными явлениями, имеющими место в атмосферных условиях, например, циркуляция, турбулентное движение и пр. В заключение дадим перечень обсерваторий, находящихся в СССР. На первом месте надо поставить Главную геофизическую обсерваторию (Ленинград), основанную в 1849 г.; рядом с ней в качестве ее загородного филиала - обсерватория в Слуцке. Учреждения эти выполняют задачи в масштабе всего Союза. Помимо них ряд обсерваторий с функциями республиканского, областного либо краевого значения: Геофизический институт в Москве, Ср.-азиатский метеорологический институт в Ташкенте, Геофизическая обсерватория в Тифлисе, Харькове, Киеве, Свердловске, Иркутске и Владивостоке, организуемые Геофизические институты в Саратове для Нижне-Волжского края и в Новосибирске для 3ападной Сибири. Имеется ряд обсерваторий на морях - в Архангельске и вновь организуемая обсерватория в Александровске для северного бассейна, в Кронштадте - для Балтийского моря, в Севастополе и Феодосии - для Черного и Азовского морей, в Баку - для Каспийского моря и во Владивостоке - для Тихого океана. Ряд бывших университетов также имеют в своем составе обсерватории с крупными работами в области метеорологии и вообще геофизики - казанский, одесский, киевский, томский. Все эти обсерватории не только ведут наблюдения в одном пункте, но и организуют экспедиционные исследования или самостоятельного, или комплексного характера по различным вопросам и отделам геофизики, чем в значительной мере содействуют изучению производительных сил СССР.

    Сейсмическая обсерватория

    Обсерватория сейсмическая служит для регистрации и изучения землетрясений . Основным прибором в измерительной практике землетрясений является сейсмограф, автоматически записывающий всякое сотрясение, которое происходит в определенной плоскости. Поэтому серия из трех приборов, два из которых - горизонтальные маятники, улавливающие и записывающие те компоненты движения или скорости, которые совершаются в направлении меридиана (NS) и параллели (EW), а третий - вертикальный маятник для записи вертикальных смещений, - необходима и достаточна для решения вопроса о месте эпицентральной области и о характере происшедшего землетрясения. К сожалению большинство сейсмических станций снабжается инструментами только для измерения горизонтальных компонентов. Общая организационная структура сейсмической службы в СССР заключается в следующем. Во главе всего дела стоит Сейсмический институт, находящийся в составе Академии наук СССР в Ленинграде. Последний руководит научной и практической деятельностью наблюдательных пунктов - сейсмических обсерваторий и различных станций, находящихся в отдельных областях страны и производящих наблюдения по определенной программе. Центральная сейсмическая обсерватория в Пулкове с одной стороны занимается производством регулярных и непрерывных наблюдений над всеми тремя составляющими движения земной коры посредством нескольких серий самопишущих приборов, с другой стороны на ней производится сравнительное изучение аппаратов и методов обработки сейсмограмм. Помимо этого, на основе собственного изучения и опыта здесь производится инструктаж других станций сейсмической сети. В соответствии со столь важной ролью, какую играет эта обсерватория в деле изучения страны в сейсмическом отношении, она имеет специально устроенный подземный павильон, так чтобы все внешние эффекты - температурные изменения, колебания здания под влиянием ударов ветра и т. п. - были устранены. Одна из зал этого павильона изолирована от стен и пола общего здания и в ней расположены наиболее ответственные серии приборов очень большой чувствительности. В практике современной сейсмометрии крупное значение имеют приборы, сконструированные академиком Б. Б. Голицыным. В приборах этих движение маятников может регистрироваться не механически, а при помощи так называемой гальванометрической регистрации , при которой происходит изменение электрического состояния в катушке, перемещающейся вместе с маятником сейсмографа в магнитном поле сильного магнита. Посредством проводов каждая катушка соединена с гальванометром, стрелка которого колеблется вместе с перемещением маятника. Зеркало, скрепленное со стрелкой гальванометра, позволяет следить за происходящими изменениями прибора или непосредственно, или при помощи фотографической регистрации. Т. о. нет необходимости входить в залу с приборами и тем нарушать токами воздуха равновесие в приборах. При такой установке приборы могут иметь весьма большую чувствительность. Помимо указанных, на обсерватории работают все время сейсмографы с механической регистрацией . Конструкция их более грубая, чувствительность значительно меньшая, и с помощью этих приборов представляется возможность контролировать, а главное восстанавливать записи приборов высокой чувствительности в случае различного рода неудач. На центральной обсерватории помимо текущей работы проводятся также многочисленные специальные исследования научного и прикладного значения.

    Обсерватории или станции 1-го разряда предназначаются для регистрации отдаленных землетрясений. Они снабжены приборами достаточно высокой чувствительности, причем в большинстве случаев на них устанавливают один комплект приборов для трех составляющих движения земли. Синхронная запись показаний этих приборов дает возможность определить угол выхода сейсмических лучей, а по записям вертикального маятника можно решить вопрос о характере волны, т. е. определить, когда подходит волна сжатия или разрежения. Некоторые из этих станций еще до сего времени имеют приборы для механической регистрации, т. е. менее чувствительные. Ряд станций помимо общих занимается решением местных вопросов существенно практического значения, например, в Макеевке (Донбасс) по записям приборов можно найти связь между сейсмическими явлениями и выходами рудничных газов; установки в Баку дают возможность определить влияние сейсмических явлений на режим нефтяных источников и пр. Все эти обсерватории издают самостоятельные бюллетени, в которых помимо общих сведений о положении станции и об инструментах даются информации о землетрясениях с указанием моментов наступления волн различного порядка, последовательных максимумов в главной фазе, вторичных максимумов и пр. Помимо этого сообщаются данные о собственных смещениях почвы во время землетрясений.

    Наконец наблюдательные сейсмические пункты 2 разряда предназначаются для записи землетрясений не особенно отдаленных или даже местных. В виду этого станции эти располагаются гл. обр. в областях сейсмических, какими у нас в Союзе являются Кавказ, Туркестан, Алтай, Байкал, полуостров Камчатка и остров Сахалин. Станции эти снабжены тяжелыми маятниками с механической регистрацией, имеют специальные полуподземного типа павильоны для установок; на них определяются моменты наступления волн первичных, вторичных и длинных, а также расстояние до эпицентра. Все эти сейсмические обсерватории несут также службу времени, т. к. наблюдения по приборам оцениваются с точностью до немногих секунд.

    Из других вопросов, которыми занимаются специальные обсерватория, укажем на изучение лунно-солнечных притяжений, т. е. приливно-отливных движений земной коры, аналогичных явлениям прилива и отлива, наблюдаемым в море. Для этих наблюдений была построена между прочим специальная обсерватория внутри холма под Томском, и здесь установлены 4 горизонтальных маятника системы Целльнера в 4 различных азимутах. При помощи специальных сейсмических установок велись наблюдения над колебанием стен зданий под влиянием работы дизелей, наблюдения над колебаниями устоев мостов, особенно железнодорожных, во время движения по ним поездов, наблюдения над режимом минеральных источников и пр. В последнее время сейсмические обсерватории предпринимают специальные экспедиционные наблюдения в целях изучения расположения и распределения подземных пластов, что имеет большое значение при поисках полезных ископаемых, особенно если наблюдения эти сопровождаются гравиметрическими работами. Наконец важной экспедиционной работой сейсмических обсерваторий является производство нивелировок высокой точности в местностях, подвергающихся значительным сейсмическим явлениям, потому что повторные работы в этих областях дают возможность точно определить величины горизонтальных и вертикальных смещений, происшедших в результате того или иного землетрясения, и дать прогноз для дальнейших смещений и явлений землетрясений.

    Астрономические обсерватории (в астрономии). Описание обсерваторий в древности и в современном мире.

    Астрономическая обсерватория - научное учреждение, предназначенное для наблюдений за небесными телами. Она строится на высоком месте, с которого можно смотреть куда угодно. Все обсерватории обязательно оборудованы телескопами и подобным оборудованием для астрономических и геофизических наблюдений.

    1. Астрономические «обсерватории» в древности.
    С древности для астрономических наблюдений люди располагались на холмах или высокой местности. Пирамиды также служили для наблюдений.

    Недалеко от крепости Карнак, что находится в городе Луксоре, есть святилище Ра – Горахте. В день зимнего солнцестояния оттуда наблюдали восход Солнца.
    Древнейшим прообразом астрономической обсерватории считается знаменитый Стоунхендж. Есть предположение, что он по ряду параметров соответствовал восходам Солнца в дни летнего солнцестояния.
    2. Первые астрономические обсерватории.
    Уже в 1425 году около Самарканда завершилось построение одной из первых обсерваторий. Она была уникальна, так как такого ещё нигде не было.
    Позже датский король отвёл остров недалеко от Швеции для создания астрономической обсерватории. Было сооружено две обсерватории. И в течение 21 года на острове продолжалась деятельность короля, в ходе которой люди узнавали всё больше о том, что такое Вселенная.
    3. Обсерватории Европы и России.
    Вскоре в Европе стремительно стали создаваться обсерватории. Одной из первых была обсерватория в Копенгагене.
    Одна из самых величественных обсерваторий того времени была построена в Париже. Там работают лучшие учёные.
    Королевская Гринвичская обсерватория обязана своей популярности тем, что через ось пассажного инструмента проходит «гринвичский меридиан». Основана она была приказом правителя Карла II. Строительство обосновывалось надобностью измерять долготу места при навигации.
    После построения Парижской и Гринвичской обсерваторий государственные обсерватории начали создаваться и в других многочисленных странах Европы. Начинает действовать более 100 обсерваторий. Они действуют почти при каждом учебном заведении, возрастает число частных обсерваторий.
    В числе первых была сооружена обсерватория Петербургской академии наук. В 1690 году на Северной Двине, рядом с Архангельском, создаётся основополагающая в России астрономическая обсерватория. В 1839 году состоялось открытие ещё одной обсерватории — Пулковской. Пулковская обсерватория имела и имеет наибольшее значение по сравнению с другими. Астрономическая обсерватория Петербургской академии наук была закрыта, а ее многочисленные приборы и инструменты перевезены в Пулково.
    Начало новой ступени в развитии астрономической науки относится к учреждению Академии наук.
    С распадом СССР снижаются затраты на развитие исследований. Из-за этого в стране начинают появляться не связанные с государством обсерватории, оборудованные техникой профессионального уровня.

    Подробности Категория: Работа астрономов Опубликовано 11.10.2012 17:13 Просмотров: 8741

    Астрономическая обсерватория – научно-исследовательское учреждение, в котором ведутся систематические наблюдения небесных светил и явлений.

    Обычно обсерватория возводится на возвышенной местности, где открывается хороший кругозор. Обсерватория оснащена инструментами для наблюдений: оптическими и радиотелескопами, приборами для обработки результатов наблюдений: астрографами, спектрографами, астрофотометрами и другими приспособлениями для характеристики небесных тел.

    Из истории обсерватории

    Трудно даже назвать время появления первых обсерваторий. Конечно, это были примитивные сооружения, но все-таки в них велись наблюдения за небесными светилами. Самые древние обсерватории находятся в Ассирии, Вавилоне, Китае, Египте, Персии, Индии, Мексике, Перу и в других государствах. Древние жрецы по сути и были первыми астрономами, потому что они вели наблюдения за звездным небом.
    – обсерватория, созданная еще в каменном веке. Она находится недалеко от Лондона. Это сооружение было одновременно и храмом, и местом для астрономических наблюдений - истолкование Стоунхенджа как грандиозной обсерватории каменного века принадлежит Дж. Хокинсу и Дж. Уайту. Предположения о том, что это древнейшая обсерватория, основаны на том, что ее каменные плиты установлены в определенном порядке. Общеизвестно, что Стоунхендж был священным местом друидов – представителей жреческой касты у древних кельтов. Друиды очень хорошо разбирались в астрономии, например, в строении и движении звёзд, размерах Земли и планет, различных астрономических явлениях. О том, откуда у них появились эти знания, науке не известно. Считается, что они унаследовали их от истинных строителей Стоунхенджа и, благодаря этому, обладали большой властью и влиянием.

    На территории Армении найдена еще одна древнейшая обсерватория, построенная около 5 тыс. лет назад.
    В XV веке в Самарканде великий астроном Улугбек построил выдающуюся для своего времени обсерваторию, в которой главным инструментом был огромный квадрант для измерения угловых расстояний звезд и других светил (об этом читайте на нашем сайте: http://сайт/index.php/earth/rabota-astrnom/10-etapi-astronimii/12-sredneverovaya-astronomiya).
    Первой обсерваторией в современном смысле этого слова был знаменитый музей в Александрии , устроенный Птолемеем II Филадельфом. Аристилл, Тимохарис, Гиппарх, Аристарх, Эратосфен, Геминус, Птолемей и другие добились здесь небывалых результатов. Здесь впервые начали употреблять инструменты с разделёнными кругами. Аристарх установил медный круг в плоскости экватора и с его помощью наблюдал непосредственно времена прохождения Солнца через точки равноденствия. Гиппарх изобрёл астролябию (астрономический инструмент, основанный на принципе стереографической проекции) с двумя взаимно перпендикулярными кругами и диоптрами для наблюдений. Птолемей ввёл квадранты и устанавливал их при помощи отвеса. Переход от полных кругов к квадрантам был, в сущности, шагом назад, но авторитет Птолемея удержал квадранты на обсерваториях до времён Рёмера, который доказал, что полными кругами, наблюдения производятся точнее; однако, квадранты были совершенно оставлены только в начале XIX века.

    Первые обсерватории современного типа стали строиться в Европе после того, как был изобретен телескоп – в XVII веке. Первая большая государственная обсерватория – парижская . Она была построена в 1667 г. Наряду с квадрантами и другими инструментами древней астрономии здесь уже использовались большие телескопы-рефракторы. В 1675 г. открылась Гринвичская королевская обсерватория в Англии, в предместье Лондона.
    Всего в мире работает более 500 обсерваторий.

    Российские обсерватории

    Первой обсерваторией в России была частная обсерватория А.А. Любимова в Холмогорах Архангельской области, открытая в 1692 г. В 1701 г. по указу Петра I создана обсерватория при Навигацкой школе в Москве. В 1839 г. была основана Пулковская обсерватория под Петербургом, оборудованная самыми совершенными инструментами, которые давали возможность получать результаты высокой точности. За это Пулковскую обсерваторию назвали астрономической столицей мира. Сейчас в России более 20 астрономических обсерваторий, среди них ведущей является Главная (Пулковская) астрономическая обсерватория Академии наук.

    Обсерватории мира

    Среди зарубежных обсерваторий наиболее крупными являются Гринвичская (Великобритания), Гарвардская и Маунт-Паломарская (США), Потсдамская (Германия), Краковская (Польша), Бюраканская (Армения), Венская (Австрия), Крымская (Украина) и др. Обсерватории различных стран обмениваются результатами наблюдений и исследований, часто работают по одинаковой программе для выработки наиболее точных данных.

    Устройство обсерваторий

    Для современных обсерваторий характерным видом является здание цилиндрической или многогранной формы. Это башни, в которых установлены телескопы. Современные обсерватории оснащены оптическими телескопами, расположенными в закрытых куполообразных зданиях, или радиотелескопами. Световое излучение, собираемое телескопами, регистрируется фотографическими или фотоэлектрическими методами и анализируется для получения информации о далеких астрономических объектах. Обсерватории обычно располагаются далеко от городов, в климатических зонах с малой облачностью и по возможности на высоких плато, где незначительна атмосферная турбулентность и можно изучать инфракрасное излучение, поглощаемое нижними слоями атмосферы.

    Типы обсерваторий

    Существуют специализированные обсерватории, которые работают по узкой научной программе: радиоастрономические, горные станции для наблюдений Солнца; некоторые обсерватории связаны с наблюдениями, проводимыми космонавтами с космических кораблей и орбитальных станций.
    Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучи космического происхождения недоступны для наблюдений с поверхности Земли. Чтобы изучать Вселенную в этих лучах, необходимо вынести наблюдательные приборы в космос. Ещё недавно внеатмосферная астрономия была недоступна. Теперь она превратилась в быстро развивающуюся отрасль науки. Результаты, полученные на космических телескопах, без малейшего преувеличения перевернули многие наши представления о Вселенной.
    Современный космический телескоп - уникальный комплекс приборов, разрабатываемый и эксплуатируемый несколькими странами в течение многих лет. В наблюдениях на современных орбитальных обсерваториях принимают участие тысячи астрономов со всего мира.

    На картинке изображен проект крупнейшего инфрактрасного оптического телескопа в Европейской южной обсерватории высотой 40 м.

    Для успешной работы космической обсерватории требуются совместные усилия самых разных специалистов. Космические инженеры готовят телескоп к запуску, выводят его на орбиту, следят за обеспечением энергией всех приборов и их нормальным функционированием. Каждый объект может наблюдаться в течение нескольких часов, поэтому особенно важно удерживать ориентацию спутника, вращающегося вокруг Земли, в одном и том же направлении, чтобы ось телескопа оставалась нацеленной строго на объект.

    Инфракрасные обсерватории

    Для проведения инфракрасных наблюдений в космос приходится отправлять довольно большой груз: сам телескоп, устройства для обработки и передачи информации, охладитель, который должен уберечь ИК-приёмник от фонового излучения - инфракрасных квантов, испускаемых самим телескопом. Поэтому за всю историю космических полётов в космосе работало очень мало инфракрасных телескопов. Первая инфракрасная обсерватория была запущена в январе 1983 г. в рамках совместного американо-европейского проекта IRAS. В ноябре 1995 г. Европейским космическим агентством осуществлён запуск на околоземную орбиту инфракрасной обсерватории ISO. На ней стоит телескоп с таким же диаметром зеркала, как и на IRAS, но для регистрации излучения используются более чувствительные детекторы. Наблюдениям ISO доступен более широкий диапазон инфракрасного спектра. В настоящее время разрабатывается ещё несколько проектов космических инфракрасных телескопов, которые будут запущены в ближайшие годы.
    Не обходятся без ИК-аппаратуры и межпланетные станции.

    Ультрафиолетовые обсерватории

    Ультрафиолетовое излучение Солнца и звёзд практически полностью поглощается озоновым слоем нашей атмосферы, поэтому УФ-кванты можно регистрировать только в верхних слоях атмосферы и за ее пределами.
    Впервые ультрафиолетовый телескоп-рефлектор с диаметром зеркала (SO см и специальный ультрафиолетовый спектрометр выведены в космос на совместном американо-европейском спутнике «Коперник», запущенном в августе 1972 г. Наблюдения на нём проводились до 1981 г.
    В настоящее время в России ведутся работы по подготовке запуска нового ультрафиолетового телескопа «Спектр-УФ» с диаметром зеркала 170 см. Крупный международный проект "Спектр-УФ" - "Всемирная космическая обсерватория" (ВКО-УФ) направлен на исследование Вселенной в недоступном для наблюдений с наземными инструментами ультрафиолетовом (УФ) участке электромагнитного спектра: 100-320 нм.
    Проект возглавляется Россией, он включен в Федеральную космическую программу на 2006-2015 гг. В настоящее время в работе над проектом участвуют Россия, Испания, Германия и Украина. Казахстан и Индия также проявляют интерес к участию в проекте. Институт астрономии РАН - головная научная организация проекта. Головной организацией по ракетно-космическому комплексу является НПО им. С.А. Лавочкина.
    В России создается основной инструмент обсерватории - космический телескоп с главным зеркалом диаметром 170 см. Телескоп будет оснащен спектрографами высокого и низкого разрешения, спектрографом с длинной щелью, а также камерами для построения высококачественных изображений в УФ и оптическом участках спектра.
    По возможностям проект ВКО-УФ сравним с американским Космическим Телескопом Хаббла (КТХ) и даже превосходит его в спектроскопии.
    ВКО-УФ откроет новые возможности для исследований планет, звездной, внегалактической астрофизики и космологии. Запуск обсерватории запланирован на 2016 год.

    Рентгеновские обсерватории

    Рентгеновские лучи доносят до нас информацию о мощных космических процессах, связанных с экстремальными физическими условиями. Высокая энергия рентгеновских и гамма-квантов позволяет регистрировать их «поштучно», с точным указанием времени регистрации. Детекторы рентгеновского излучения относительно легки в изготовлении и имеют небольшой вес. Поэтому они использовались для наблюдений в верхних слоях атмосферы и за её пределами с помощью высотных ракет ещё до первых запусков искусственных спутников Земли. Рентгеновские телескопы устанавливались на многих орбитальных станциях и межпланетных космических кораблях. Всего в околоземном пространстве побывало около сотни таких телескопов.

    Гамма-обсерватории

    Гамма-излучение тесно соседствует с рентгеновским, поэтому для его регистрации используют похожие методы. Очень часто на телескопах, запускаемых на околоземные орбиты, исследуют одновременно и рентгеновские, и гамма-источники. Гамма-лучи доносят до нас информацию о процессах, происходящих внутри атомных ядер, и о превращениях элементарных частиц в космосе.
    Первые наблюдения космических гамма-источников были засекречены. В конце 60-х - начале 70-х гг. США запустили четыре военных спутника серии «Вела». Аппаратура этих спутников разрабатывалась для обнаружения всплесков жёсткого рентгеновского и гамма-излучения, возникающих во время ядерных взрывов. Однако оказалось, что большинство из зарегистрированных всплесков не связаны с военными испытаниями, а их источники расположены не на Земле, а в космосе. Так было открыто одно из самых загадочных явлений во Вселенной - гамма-вспышки, представляющие собой однократные мощные вспышки жёсткого излучения. Хотя первые космические гамма-вспышки были зафиксированы ещё в 1969 г., информацию о них опубликовали только четыре года спустя.